scholarly journals Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis

2013 ◽  
Vol 24 (22) ◽  
pp. 3522-3533 ◽  
Author(s):  
Shusheng Wang ◽  
Stephanie A. Ketcham ◽  
Arne Schön ◽  
Benjamin Goodman ◽  
Yueju Wang ◽  
...  

Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.

1997 ◽  
Vol 138 (3) ◽  
pp. 615-628 ◽  
Author(s):  
Rebecca Heald ◽  
Régis Tournebize ◽  
Anja Habermann ◽  
Eric Karsenti ◽  
Anthony Hyman

In Xenopus egg extracts, spindles assembled around sperm nuclei contain a centrosome at each pole, while those assembled around chromatin beads do not. Poles can also form in the absence of chromatin, after addition of a microtubule stabilizing agent to extracts. Using this system, we have asked (a) how are spindle poles formed, and (b) how does the nucleation and organization of microtubules by centrosomes influence spindle assembly? We have found that poles are morphologically similar regardless of their origin. In all cases, microtubule organization into poles requires minus end–directed translocation of microtubules by cytoplasmic dynein, which tethers centrosomes to spindle poles. However, in the absence of pole formation, microtubules are still sorted into an antiparallel array around mitotic chromatin. Therefore, other activities in addition to dynein must contribute to the polarized orientation of microtubules in spindles. When centrosomes are present, they provide dominant sites for pole formation. Thus, in Xenopus egg extracts, centrosomes are not necessarily required for spindle assembly but can regulate the organization of microtubules into a bipolar array.


1995 ◽  
Vol 6 (2) ◽  
pp. 215-226 ◽  
Author(s):  
T Izumi ◽  
J L Maller

The M-phase inducer, Cdc25C, is a dual-specificity phosphatase that directly phosphorylates and activates the cyclin B/Cdc2 kinase complex, leading to initiation of mitosis. Cdc25 itself is activated at the G2/M transition by phosphorylation on serine and threonine residues. Previously, it was demonstrated that Cdc2 kinase is capable of phosphorylating and activating Cdc25, suggesting the existence of a positive feedback loop. In the present study, kinases other than Cdc2 that can phosphorylate and activate Cdc25 were investigated. Cdc25 was found to be phosphorylated and activated by cyclin A/Cdk2 and cyclin E/Cdk2 in vitro. However, in interphase Xenopus egg extracts with no detectable Cdc2 and Cdk2, treatment with the phosphatase inhibitor microcystin activated a distinct kinase that could phosphorylate and activate Cdc25. Microcystin also induced other mitotic phenomena such as chromosome condensation and nuclear envelope breakdown in extracts containing less than 5% of the mitotic level of Cdc2 kinase activity. These findings implicate a kinase other than Cdc2 and Cdk2 that may initially activate Cdc25 in vivo and suggest that this kinase may also phosphorylate M-phase substrates even in the absence of Cdc2 kinase.


2013 ◽  
Vol 451 (2) ◽  
pp. 195-204 ◽  
Author(s):  
Yuko Iwakiri ◽  
Sachiko Kamakura ◽  
Junya Hayase ◽  
Hideki Sumimoto

Bipolar spindle assembly in mitotic cells is a prerequisite to ensure correct alignment of chromosomes for their segregation to each daughter cell; spindle microtubules are tethered at plus ends to chromosomes and focused at minus ends to either of the two spindle poles. NuMA (nuclear mitotic apparatus protein) is present solely in the nucleus in interphase cells, but relocalizes during mitosis to the spindle poles to play a crucial role in spindle assembly via focusing spindle microtubules to each pole. In the present study we show that the kinesin-5 family motor Eg5 is a protein that directly interacts with NuMA, using a proteomics approach and various binding assays both in vivo and in vitro. During mitosis Eg5 appears to interact with NuMA in the vicinity of the spindle poles, whereas the interaction does not occur in interphase cells, where Eg5 is distributed throughout the cytoplasm but NuMA exclusively localizes to the nucleus. Slight, but significant, depletion of Eg5 in HeLa cells by RNA interference results in formation of less-focused spindle poles with misaligned chromosomes in metaphase; these phenotypes are similar to those induced by depletion of NuMA. Since NuMA is less accumulated at the spindle poles in Eg5-depleted cells, Eg5 probably contributes to spindle assembly via regulating NuMA localization. Furthermore, depletion of cytoplasmic dynein induces mislocalization of NuMA and phenotypes similar to those observed in NuMA-depleted cells, without affecting Eg5 localization to the spindles. Thus dynein appears to control NuMA function in conjunction with Eg5.


2006 ◽  
Vol 17 (9) ◽  
pp. 3806-3818 ◽  
Author(s):  
Arturo V. Orjalo ◽  
Alexei Arnaoutov ◽  
Zhouxin Shen ◽  
Yekaterina Boyarchuk ◽  
Samantha G. Zeitlin ◽  
...  

The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.


1996 ◽  
Vol 16 (9) ◽  
pp. 4673-4682 ◽  
Author(s):  
J Chen ◽  
P Saha ◽  
S Kornbluth ◽  
B D Dynlacht ◽  
A Dutta

The cyclin-dependent kinase (Cdk) inhibitor p21 is induced by the tumor suppressor p53 and is required for the G1-S block in cells with DNA damage. We report that there are two copies of a cyclin-binding motif in p21, Cy1 and Cy2, which interact with the cyclins independently of Cdk2. The cyclin-binding motifs of p21 are required for optimum inhibition of cyclin-Cdk kinases in vitro and for growth suppression in vivo. Peptides containing only the Cy1 or Cy2 motif partially inhibit cyclin-Cdk kinase activity in vitro and DNA replication in Xenopus egg extracts. A monoclonal antibody which recognizes the Cy1 site of p21 specifically disrupts the association of p21 with cyclin E-Cdk2 and with cyclin D1-Cdk4 in cell extracts. Taken together, these observations suggest that the cyclin-binding motif of p21 is important for kinase inhibition and for formation of p21-cyclin-Cdk complexes in the cell. Finally, we show that the cyclin-Cdk complex is partially active if associated with only the cyclin-binding motif of p21, providing an explanation for how p21 is found associated with active cyclin-Cdk complexes in vivo. The Cy sequences may be general motifs used by Cdk inhibitors or substrates to interact with the cyclin in a cyclin-Cdk complex.


PLoS Biology ◽  
2011 ◽  
Vol 9 (12) ◽  
pp. e1001225 ◽  
Author(s):  
David Halpin ◽  
Petr Kalab ◽  
Jay Wang ◽  
Karsten Weis ◽  
Rebecca Heald

2005 ◽  
Vol 16 (10) ◽  
pp. 4827-4840 ◽  
Author(s):  
Joan Roig ◽  
Aaron Groen ◽  
Jennifer Caldwell ◽  
Joseph Avruch

The Nercc1 protein kinase autoactivates in vitro and is activated in vivo during mitosis. Autoactivation in vitro requires phosphorylation of the activation loop at threonine 210. Mitotic activation of Nercc1 in mammalian cells is accompanied by Thr210 phosphorylation and involves a small fraction of total Nercc1. Mammalian Nercc1 coimmunoprecipitates γ-tubulin and the activated Nercc1 polypeptides localize to the centrosomes and spindle poles during early mitosis, suggesting that active Nercc has important functions at the microtubular organizing center during cell division. To test this hypothesis, we characterized the Xenopus Nercc1 orthologue (XNercc). XNercc endogenous to meiotic egg extracts coprecipitates a multiprotein complex that contains γ-tubulin and several components of the γ-tubulin ring complex and localizes to the poles of spindles formed in vitro. Reciprocally, immunoprecipitates of the γ-tubulin ring complex polypeptide Xgrip109 contain XNercc. Immunodepletion of XNercc from egg extracts results in delayed spindle assembly, fewer bipolar spindles, and the appearance of aberrant microtubule structures, aberrations corrected by addition of purified recombinant XNercc. XNercc immunodepletion also slows aster assembly induced by Ran-GTP, producing Ran-asters of abnormal size and morphology. Thus, Nercc1 contributes to both the centrosomal and the chromatin/Ran pathways that collaborate in the organization of a bipolar spindle.


2005 ◽  
Vol 16 (6) ◽  
pp. 2836-2847 ◽  
Author(s):  
Lori L. O'Brien ◽  
Alison J. Albee ◽  
Lingling Liu ◽  
Wei Tao ◽  
Pawel Dobrzyn ◽  
...  

Maskin is the Xenopus homolog of the transforming acidic coiled coil (TACC)-family of microtubule and centrosome-interacting proteins. Members of this family share a ∼200 amino acid coiled coil motif at their C-termini, but have only limited homology outside of this domain. In all species examined thus far, perturbations of TACC proteins lead to disruptions of cell cycle progression and/or embryonic lethality. In Drosophila, Caenorhabditis elegans, and humans, these disruptions have been attributed to mitotic spindle assembly defects, and the TACC proteins in these organisms are thought to function as structural components of the spindle. In contrast, cell division failure in early Xenopus embryo blastomeres has been attributed to a role of maskin in regulating the translation of, among others, cyclin B1 mRNA. In this study, we show that maskin, like other TACC proteins, plays a direct role in mitotic spindle assembly in Xenopus egg extracts and that this role is independent of cyclin B. Maskin immunodepletion and add-back experiments demonstrate that maskin, or a maskin-associated activity, is required for two distinct steps during spindle assembly in Xenopus egg extracts that can be distinguished by their response to “rescue” experiments. Defects in the “early” step, manifested by greatly reduced aster size during early time points in maskin-depleted extracts, can be rescued by readdition of purified full-length maskin. Moreover, defects in this step can also be rescued by addition of only the TACC-domain of maskin. In contrast, defects in the “late” step during spindle assembly, manifested by abnormal spindles at later time points, cannot be rescued by readdition of maskin. We show that maskin interacts with a number of proteins in egg extracts, including XMAP215, a known modulator of microtubule dynamics, and CPEB, a protein that is involved in translational regulation of important cell cycle regulators. Maskin depletion from egg extracts results in compromised microtubule asters and spindles and the mislocalization of XMAP215, but CPEB localization is unaffected. Together, these data suggest that in addition to its previously reported role as a translational regulator, maskin is also important for mitotic spindle assembly.


Sign in / Sign up

Export Citation Format

Share Document