scholarly journals Functional specialization of calreticulin domains

2001 ◽  
Vol 154 (5) ◽  
pp. 961-972 ◽  
Author(s):  
Kimitoshi Nakamura ◽  
Anna Zuppini ◽  
Serge Arnaudeau ◽  
Jeffery Lynch ◽  
Irfan Ahsan ◽  
...  

Calreticulin is a Ca2+-binding chaperone in the endoplasmic reticulum (ER), and calreticulin gene knockout is embryonic lethal. Here, we used calreticulin-deficient mouse embryonic fibroblasts to examine the function of calreticulin as a regulator of Ca2+ homeostasis. In cells without calreticulin, the ER has a lower capacity for Ca2+ storage, although the free ER luminal Ca2+ concentration is unchanged. Calreticulin-deficient cells show inhibited Ca2+ release in response to bradykinin, yet they release Ca2+ upon direct activation with the inositol 1,4,5-trisphosphate (InsP3). These cells fail to produce a measurable level of InsP3 upon stimulation with bradykinin, likely because the binding of bradykinin to its cell surface receptor is impaired. Bradykinin binding and bradykinin-induced Ca2+ release are both restored by expression of full-length calreticulin and the N + P domain of the protein. Expression of the P + C domain of calreticulin does not affect bradykinin-induced Ca2+ release but restores the ER Ca2+ storage capacity. Our results indicate that calreticulin may play a role in folding of the bradykinin receptor, which affects its ability to initiate InsP3-dependent Ca2+ release in calreticulin-deficient cells. We concluded that the C domain of calreticulin plays a role in Ca2+ storage and that the N domain may participate in its chaperone functions.

2009 ◽  
Vol 3 (4) ◽  
pp. 379-383 ◽  
Author(s):  
Xiaowei Gong ◽  
Aihua Liu ◽  
Xiaoyan Ming ◽  
Xu Wang ◽  
Daan Wang ◽  
...  

Gene Reports ◽  
2019 ◽  
Vol 16 ◽  
pp. 100419
Author(s):  
Ali Zarei ◽  
Vahid Razban ◽  
Seyed Mohammad Bagher Tabei ◽  
Seyed Ebrahim Hosseini

1986 ◽  
Vol 82 (1) ◽  
pp. 41-51
Author(s):  
G.N. Europe-Finner ◽  
P.C. Newell

The effect of chemoattractants such as cyclic AMP and folate on amoebae of the cellular slime mould Dictyostelium discoideum is to cause a series of rapid intracellular responses. One of the most rapid of these responses is the polymerization of actin associated with the cytoskeleton, an event correlated with pseudopodium formation, which occurs within 3–5 s of chemotactic receptor stimulation. We report that this response can be mimicked by addition of 5 microM-inositol 1,4,5-triphosphate (IP3) or by addition of 100 microM-Ca2+ to saponin-permeabilized amoebae. The data suggest that cytoskeletal actin polymerization occurs in normal cells as a result of IP3 formation in response to cell surface receptor stimulation and the consequent release of Ca2+ from internal stores.


1987 ◽  
Vol 245 (1) ◽  
pp. 49-57 ◽  
Author(s):  
M J Rebecchi ◽  
O M Rosen

One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5′-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5′-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.


Chromosoma ◽  
2012 ◽  
Vol 121 (4) ◽  
pp. 419-431 ◽  
Author(s):  
Eva Polanská ◽  
Zuzana Dobšáková ◽  
Martina Dvořáčková ◽  
Jiří Fajkus ◽  
Michal Štros

2017 ◽  
Vol 28 (6) ◽  
pp. 771-782 ◽  
Author(s):  
Xiaobai Patrinostro ◽  
Allison R. O'Rourke ◽  
Christopher M. Chamberlain ◽  
Branden S. Moriarity ◽  
Benjamin J. Perrin ◽  
...  

The highly homologous β (βcyto) and γ (γcyto) cytoplasmic actins are hypothesized to carry out both redundant and unique essential functions, but studies using targeted gene knockout and siRNA-mediated transcript knockdown to examine βcyto- and γcyto-isoform–­specific functions in various cell types have yielded conflicting data. Here we quantitatively characterized actin transcript and protein levels, as well as cellular phenotypes, in both gene- and transcript-targeted primary mouse embryonic fibroblasts. We found that the smooth muscle αsm-actin isoform was the dominantly expressed actin isoform in WT primary fibroblasts and was also the most dramatically up-regulated in primary βcyto- or β/γcyto-actin double-knockout fibroblasts. Gene targeting of βcyto-actin, but not γcyto-actin, led to greatly decreased cell proliferation, decreased levels of cellular ATP, and increased serum response factor signaling in primary fibroblasts, whereas immortalization induced by SV40 large T antigen supported fibroblast proliferation in the absence of βcyto-actin. Consistent with in vivo gene-targeting studies in mice, both gene- and transcript-targeting approaches demonstrate that the loss of βcyto-actin protein is more disruptive to primary fibroblast function than is the loss of γcyto-actin.


2001 ◽  
Vol 120 (5) ◽  
pp. A18-A19
Author(s):  
B DIECKGRAEFE ◽  
C HOUCHEN ◽  
H ZHANG

Sign in / Sign up

Export Citation Format

Share Document