scholarly journals Extracellular annexins and dynamin are important for sequential steps in myoblast fusion

2012 ◽  
Vol 200 (1) ◽  
pp. 109-123 ◽  
Author(s):  
Evgenia Leikina ◽  
Kamran Melikov ◽  
Sarmistha Sanyal ◽  
Santosh K. Verma ◽  
Bokkee Eun ◽  
...  

Myoblast fusion into multinucleated myotubes is a crucial step in skeletal muscle development and regeneration. Here, we accumulated murine myoblasts at the ready-to-fuse stage by blocking formation of early fusion intermediates with lysophosphatidylcholine. Lifting the block allowed us to explore a largely synchronized fusion. We found that initial merger of two cell membranes detected as lipid mixing involved extracellular annexins A1 and A5 acting in a functionally redundant manner. Subsequent stages of myoblast fusion depended on dynamin activity, phosphatidylinositol(4,5)bisphosphate content, and cell metabolism. Uncoupling fusion from preceding stages of myogenesis will help in the analysis of the interplay between protein machines that initiate and complete cell unification and in the identification of additional protein players controlling different fusion stages.

2001 ◽  
Vol 153 (4) ◽  
pp. 677-686 ◽  
Author(s):  
Jacqueline Fischer-Lougheed ◽  
Jian-Hui Liu ◽  
Estelle Espinos ◽  
David Mordasini ◽  
Charles R. Bader ◽  
...  

Myoblast fusion is essential to skeletal muscle development and repair. We have demonstrated previously that human myoblasts hyperpolarize, before fusion, through the sequential expression of two K+ channels: an ether-à-go-go and an inward rectifier. This hyperpolarization is a prerequisite for fusion, as it sets the resting membrane potential in a range at which Ca2+ can enter myoblasts and thereby trigger fusion via a window current through α1H T channels.


2019 ◽  
Vol 218 (5) ◽  
pp. 1670-1685 ◽  
Author(s):  
Mei-Chun Chuang ◽  
Shan-Shan Lin ◽  
Ryosuke L. Ohniwa ◽  
Gang-Hui Lee ◽  
You-An Su ◽  
...  

Skeletal muscle development requires the cell–cell fusion of differentiated myoblasts to form muscle fibers. The actin cytoskeleton is known to be the main driving force for myoblast fusion; however, how actin is organized to direct intercellular fusion remains unclear. Here we show that an actin- and dynamin-2–enriched protrusive structure, the invadosome, is required for the fusion process of myogenesis. Upon differentiation, myoblasts acquire the ability to form invadosomes through isoform switching of a critical invadosome scaffold protein, Tks5. Tks5 directly interacts with and recruits dynamin-2 to the invadosome and regulates its assembly around actin filaments to strengthen the stiffness of dynamin-actin bundles and invadosomes. These findings provide a mechanistic framework for the acquisition of myogenic fusion machinery during myogenesis and reveal a novel structural function for Tks5 and dynamin-2 in organizing actin filaments in the invadosome to drive membrane fusion.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Gene ◽  
2021 ◽  
Vol 783 ◽  
pp. 145562
Author(s):  
Huadong Yin ◽  
Shunshun Han ◽  
Can Cui ◽  
Yan Wang ◽  
Diyan Li ◽  
...  

2011 ◽  
Vol 26 (2) ◽  
pp. 748-756 ◽  
Author(s):  
Laurence Pessemesse ◽  
Audrey Schlernitzauer ◽  
Chamroeun Sar ◽  
Jonathan Levin ◽  
Stéphanie Grandemange ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. 345-352 ◽  
Author(s):  
Guoda Ma ◽  
Yajun Wang ◽  
You Li ◽  
Lili Cui ◽  
Yujuan Zhao ◽  
...  

2011 ◽  
Vol 42 (6) ◽  
pp. 600-612 ◽  
Author(s):  
B. P. Sollero ◽  
S. E. F. Guimarães ◽  
V. D. Rilington ◽  
R. J. Tempelman ◽  
N. E. Raney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document