scholarly journals Src activation by Chk1 promotes actin patch formation and prevents chromatin bridge breakage in cytokinesis

2018 ◽  
Vol 217 (9) ◽  
pp. 3071-3089 ◽  
Author(s):  
Maria Dandoulaki ◽  
Eleni Petsalaki ◽  
David Sumpton ◽  
Sara Zanivan ◽  
George Zachos

In cytokinesis with chromatin bridges, cells delay abscission and retain actin patches at the intercellular canal to prevent chromosome breakage. In this study, we show that inhibition of Src, a protein-tyrosine kinase that regulates actin dynamics, or Chk1 kinase correlates with chromatin breakage and impaired formation of actin patches but not with abscission in the presence of chromatin bridges. Chk1 is required for optimal localization and complete activation of Src. Furthermore, Chk1 phosphorylates human Src at serine 51, and phosphorylated Src localizes to actin patches, the cell membrane, or the nucleus. Nonphosphorylatable mutation of S51 to alanine reduces Src catalytic activity and impairs formation of actin patches, whereas expression of a phosphomimicking Src-S51D protein rescues actin patches and prevents chromatin breakage in Chk1-deficient cells. We propose that Chk1 phosphorylates Src-S51 to fully induce Src kinase activity and that phosphorylated Src promotes formation of actin patches and stabilizes chromatin bridges. These results identify proteins that regulate formation of actin patches in cytokinesis.

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 240
Author(s):  
Lan-Yi Wei ◽  
Wei Lin ◽  
Bey-Fen Leo ◽  
Lik-Voon Kiew ◽  
Chia-Ching Chang ◽  
...  

A miniature tyrosinase-based electrochemical sensing platform for label-free detection of protein tyrosine kinase activity was developed in this study. The developed miniature sensing platform can detect the substrate peptides for tyrosine kinases, such as c-Src, Hck and Her2, in a low sample volume (1–2 μL). The developed sensing platform exhibited a high reproducibility for repetitive measurement with an RSD (relative standard deviation) of 6.6%. The developed sensing platform can detect the Hck and Her2 in a linear range of 1–200 U/mL with the detection limit of 1 U/mL. The sensing platform was also effective in assessing the specificity and efficacies of the inhibitors for protein tyrosine kinases. This is demonstrated by the detection of significant inhibition of Hck (~88.1%, but not Her2) by the Src inhibitor 1, an inhibitor for Src family kinases, as well as the significant inhibition of Her2 (~91%, but not Hck) by CP-724714 through the platform. These results suggest the potential of the developed miniature sensing platform as an effective tool for detecting different protein tyrosine kinase activity and for accessing the inhibitory effect of various inhibitors to these kinases.


2004 ◽  
Vol 78 (23) ◽  
pp. 12773-12780 ◽  
Author(s):  
Kati Pulkkinen ◽  
G. Herma Renkema ◽  
Frank Kirchhoff ◽  
Kalle Saksela

ABSTRACT We have previously reported that Nef specifically interacts with a small but highly active subpopulation of p21-activated kinase 2 (PAK2). Here we show that this is due to a transient association of Nef with a PAK2 activation complex within a detergent-insoluble membrane compartment containing the lipid raft marker GM1. The low abundance of this Nef-associated kinase (NAK) complex was found to be due to an autoregulatory mechanism. Although activation of PAK2 was required for assembly of the NAK complex, catalytic activity of PAK2 also promoted dissociation of this complex. Testing different constitutively active PAK2 mutants indicated that the conformation associated with p21-mediated activation rather than kinase activity per se was required for PAK2 to become NAK. Although association with PAK2 is one of the most conserved properties of Nef, we found that the ability to stimulate PAK2 activity differed markedly among divergent Nef alleles, suggesting that PAK2 association and activation are distinct functions of Nef. However, mutations introduced into the p21-binding domain of PAK2 revealed that p21-GTPases are involved in both of these Nef functions and, in addition to promoting PAK2 activation, also help to physically stabilize the NAK complex.


Sign in / Sign up

Export Citation Format

Share Document