scholarly journals Wnts regulate planar cell polarity via heterotrimeric G protein and PI3K signaling

2020 ◽  
Vol 219 (10) ◽  
Author(s):  
Andre Landin Malt ◽  
Arielle K. Hogan ◽  
Connor D. Smith ◽  
Maxwell S. Madani ◽  
Xiaowei Lu

In the mammalian cochlea, the planar cell polarity (PCP) pathway aligns hair cell orientation along the plane of the sensory epithelium. Concurrently, multiple cell intrinsic planar polarity (referred to as iPCP) modules mediate planar polarization of the hair cell apical cytoskeleton, including the kinocilium and the V-shaped hair bundle essential for mechanotransduction. How PCP and iPCP are coordinated during development and the roles of Wnt ligands in this process remain unresolved. Here we show that genetic blockade of Wnt secretion in the cochlear epithelium resulted in a shortened cochlear duct and misoriented and misshapen hair bundles. Mechanistically, Wnts stimulate Gi activity by regulating the localization of Daple, a guanine nucleotide exchange factor (GEF) for Gαi. In turn, the Gβγ complex signals through phosphoinositide 3-kinase (PI3K) to regulate kinocilium positioning and asymmetric localizations of a subset of core PCP proteins, thereby coordinating PCP and iPCP. Thus, our results identify a putative Wnt/heterotrimeric G protein/PI3K pathway for PCP regulation.

2019 ◽  
Vol 116 (11) ◽  
pp. 4999-5008 ◽  
Author(s):  
Andre Landin Malt ◽  
Zachary Dailey ◽  
Julia Holbrook-Rasmussen ◽  
Yuqiong Zheng ◽  
Arielle Hogan ◽  
...  

In the inner ear sensory epithelia, stereociliary hair bundles atop sensory hair cells are mechanosensory apparatus with planar polarized structure and orientation. This is established during development by the concerted action of tissue-level, intercellular planar cell polarity (PCP) signaling and a hair cell-intrinsic, microtubule-mediated machinery. However, how various polarity signals are integrated during hair bundle morphogenesis is poorly understood. Here, we show that the conserved cell polarity protein Par3 is essential for planar polarization of hair cells. Par3 deletion in the inner ear disrupted cochlear outgrowth, hair bundle orientation, kinocilium positioning, and basal body planar polarity, accompanied by defects in the organization and cortical attachment of hair cell microtubules. Genetic mosaic analysis revealed that Par3 functions both cell-autonomously and cell-nonautonomously to regulate kinocilium positioning and hair bundle orientation. At the tissue level, intercellular PCP signaling regulates the asymmetric localization of Par3, which in turn maintains the asymmetric localization of the core PCP protein Vangl2. Mechanistically, Par3 interacts with and regulates the localization of Tiam1 and Trio, which are guanine nucleotide exchange factors (GEFs) for Rac, thereby stimulating Rac-Pak signaling. Finally, constitutively active Rac1 rescued the PCP defects in Par3-deficient cochleae. Thus, a Par3–GEF–Rac axis mediates both tissue-level and hair cell-intrinsic PCP signaling.


2004 ◽  
Vol 101 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Chie Sakihara ◽  
William J. Perkins ◽  
David O. Warner ◽  
Keith A. Jones

Background Anesthetics inhibit airway smooth muscle contraction in part by a direct effect on the smooth muscle cell. This study tested the hypothesis that the anesthetics halothane and hexanol, which both relax airway smooth muscle in vitro, inhibit acetylcholine-promoted nucleotide exchange at the alpha subunit of the Gq/11 heterotrimeric G protein (Galphaq/11; i.e., they inhibit muscarinic receptor-Galphaq/11 coupling). Methods The effect of halothane (0.38 +/- 0.02 mm) and hexanol (10 mm) on basal and acetylcholine-stimulated Galphaq/11 guanosine nucleotide exchange was determined in membranes prepared from porcine tracheal smooth muscle. The nonhydrolyzable, radioactive form of guanosine-5'-triphosphate, [S]GTPgammaS, was used as the reporter for Galphaq/11 subunit dissociation from the membrane to soluble fraction, which was immunoprecipitated with rabbit polyclonal anti-Galphaq/11 antiserum. Results Acetylcholine caused a significant time- and concentration-dependent increase in the magnitude of Galphaq/11 nucleotide exchange compared with basal values (i.e., without acetylcholine), reaching a maximal difference at 100 microm (35.9 +/-2.9 vs. 9.8 +/-1.2 fmol/mg protein, respectively). Whereas neither anesthetic had an effect on basal Galphaq/11 nucleotide exchange, both halothane and hexanol significantly inhibited the increase in Galphaq/11 nucleotide exchange produced by 30 microm acetylcholine (by 59% and 68%, respectively). Conclusions Halothane and hexanol interact with the receptor-heterotrimeric G-protein complex in a manner that prevents acetylcholine-promoted exchange of guanosine-5(')-triphosphate for guanosine-5'-diphosphate at Galphaq/11. These data are consistent with the ability of anesthetics to interfere with cellular processes mediated by heterotrimeric G proteins in many cells, including effects on muscarinic receptor-G-protein regulation of airway smooth muscle contraction.


2013 ◽  
Vol 24 (4) ◽  
pp. 521-534 ◽  
Author(s):  
Travis I. Moore ◽  
Hiromasa Tanaka ◽  
Hyung Joon Kim ◽  
Noo Li Jeon ◽  
Tau-Mu Yi

Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change.


2015 ◽  
Vol 1615 ◽  
pp. 22-30 ◽  
Author(s):  
Xiao-yu Yang ◽  
Kai Jin ◽  
Rui Ma ◽  
Juan-mei Yang ◽  
Wen-wei Luo ◽  
...  

2011 ◽  
Vol 352 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Ulrike J. Sienknecht ◽  
Brittany K. Anderson ◽  
Rebecca M. Parodi ◽  
Kristen N. Fantetti ◽  
Donna M. Fekete

Sign in / Sign up

Export Citation Format

Share Document