scholarly journals ISOLATION OF TWO DISTINCT CLASSES OF POLYSOMES FROM A NUCLEAR FRACTION OF RAT LIVER

1968 ◽  
Vol 37 (1) ◽  
pp. 163-181 ◽  
Author(s):  
Paul D. Sadowski ◽  
Janet Alcock Howden

Isolated rat liver nuclei were washed with Triton-X-100 in the presence of liver cell sap. This treatment liberated a fraction of polysomes which were isolated by differential centrifugation and were designated "outer membrane polysomes." The outer membrane polysomes synthesized protein in vivo. Shortly after injection of orotic acid-14C, the RNA of outer membrane polysomes had a higher specific activity than that of cytoplasmic polysomes. It was postulated that outer membrane polysomes may be an intermediate in the transfer of newly synthesized RNA from the nucleus to the cytoplasm. In other experiments, Triton-washed rat liver nuclei were lysed in the presence of deoxycholate and deoxyribonuclease. A ribonucleoprotein fraction was isolated from the lysate by differential centrifugation. This fraction contained "intranuclear ribosomes," which sedimented like partially degraded polysomes in sucrose gradients. This degradation could be partially prevented if intranuclear ribosomes were purified by sedimentation through heavy sucrose. The resulting pellets were termed "intranuclear polysomes" because they contained some undergraded polysomes. Intranuclear polysomes were highly radioactive after a brief pulse with orotic acid-14C, but did not appear to synthesize protein rapidly in vivo. Intranuclear polysomes may represent the initial stage of assembly of polyribosomes in the nucleus.

1974 ◽  
Vol 52 (12) ◽  
pp. 1143-1153 ◽  
Author(s):  
D. Suria ◽  
C. C. Liew

Non-histone chromatin proteins were isolated from rat-liver nuclei by three different methods, and defined as (I) phenol-soluble proteins, (II) SDS-soluble proteins and (III) proteins not adsorbed by cation-exchange chromatography. About 62–70% of chromatin proteins were recovered from the total nuclear proteins. The yield of non-histone chromatin proteins varied from 17 to 26% of chromatin proteins, depending on the method used. The amino-acid composition of these proteins showed that they are acidic in nature. Their phosphorus content was found to be 0.9, 1.1, and 1.4%, respectively, according to method I, II, or III. In-vivo pulse-labelling experiments indicated that chromatin proteins were highly labelled with 3H-acetate and 32P-phosphoric acid. In particular, the specific activities of 32P incorporation were higher in all non-histone chromatin proteins isolated as compared with histones. One-dimensional SDS–polyacrylamide gel electrophoresis showed that at least 26 similar fractions can be detected in the samples prepared by these three methods.The similarity of some of the proteins obtained from methods I and III was further confirmed by fractionation of the non-histone chromatin proteins in an isoelectro-focusing system followed by a second-dimensional SDS–polyacrylamide gel electrophoresis. It was found that more than 100 components could be identified. However, some minor variations of the non-histone chromatin proteins were detected by this system. The differences in proteins isolated by these methods are mainly quantitative rather than qualitative. The methods examined are not specific for the fractionation of a certain class of non-histone chromatin proteins.


Author(s):  
Elizabeth D. Whittle ◽  
Donald E. Bushnell ◽  
Van R. Potter

Sign in / Sign up

Export Citation Format

Share Document