scholarly journals A dependent pathway of gene functions leading to chromosome segregation in Saccharomyces cerevisiae.

1982 ◽  
Vol 94 (3) ◽  
pp. 718-726 ◽  
Author(s):  
J S Wood ◽  
L H Hartwell

Methyl-benzimidazole-2-ylcarbamate (MBC) inhibits the mitotic cell cycle of Saccharomyces cerevisiae at a stage subsequent to DNA synthesis and before the completion of nuclear division (Quinlan, R. A., C. I. Pogson, and K, Gull, 1980, J Cell Sci., 46: 341-352). The step in the cell cycle that is sensitive to MBC inhibition was ordered to reciprocal shift experiments with respect to the step catalyzed by cdc gene products. Execution of the CDC7 step is required for the initiation of DNA synthesis and for completion of the MBC-sensitive step. Results obtained with mutants (cdc2, 6, 8, 9, and 21) defective in DNA replication and with an inhibitor of DNA replication (hydroxyurea) suggest that some DNA replication required for execution of the MBC-sensitive step but that the completion of replication is not. Of particular interest were mutants (cdc5, 13, 14, 15, 16, 17, and 23) that arrest cell division after DNA replication but before nuclear division since previous experiments had not been able to resolve the pathway of events in this part of the cell cycle. Execution of the CDC17 step was found to be a prerequisite for execution of the MBC-sensitive step; the CDC13, 16 and 23 steps are executed independently of the MBC-sensitive step; execution of the MBC-sensitive step is prerequisite for execution of the MBC-sensitive step; execution of the MBC-sensitive step is prerequisite for execution of the CDC14 and 23 steps. These results considerably extend the dependent pathway of events that constitute the cell cycle of S. cerevisiae.

2005 ◽  
Vol 25 (15) ◽  
pp. 6330-6337 ◽  
Author(s):  
Jordi Malapeira ◽  
Alberto Moldón ◽  
Elena Hidalgo ◽  
Gerald R. Smith ◽  
Paul Nurse ◽  
...  

ABSTRACT The meiotic cell cycle is modified from the mitotic cell cycle by having a premeiotic S phase which leads to high levels of recombination, a reductional pattern of chromosome segregation at the first division, and a second division with no intervening DNA synthesis. Cyclin-dependent kinases are essential for progression through the meiotic cell cycle, as for the mitotic cycle. Here we show that a fission yeast cyclin, Rem1, is present only during meiosis. Cells lacking Rem1 have impaired meiotic recombination, and Rem1 is required for premeiotic DNA synthesis when Cig2 is not present. rem1 expression is regulated at the level of both transcription and splicing, with Mei4 as a positive and Cig2 a negative factor of rem1 splicing. This regulation ensures the timely appearance of the different cyclins during meiosis, which is required for the proper progression through the meiotic cell cycle. We propose that the meiosis-specific B-type cyclin Rem1 has a central role in bringing about progression through meiosis.


The fission yeast Schizosaccharomyces pombe has been used to identify gene functions required for the cell to become committed to the mitotic cell cycle and to initiate the processes leading to chromosome replication in S-phase. Two gene functions cdc 2 and cdc 10 must be executed for the cell to traverse ‘start’ and proceed from G1 into S-phase. Before the completion of these two functions the cell is in an uncommitted state and can undergo alternative developmental fates such as conjugation. A third gene, sucl, has also been identified whose product may interact directly with that of cdc 2 at ‘start’. The molecular functions of the genes involved in the completion of ‘ start ’ have been investigated. The cdc 2 gene has been shown to be a protein kinase, suggesting that phosphorylation may be involved in the control over the transition from G1 into S-phase. The biochemical functions of the cdc 10 and suc 1 gene products have not yet been elucidated. A control at ‘start’ has also been shown to exist in the budding yeast Saccharomyces cerevisiae . Traverse o f‘start’ requires the execution of the CDC28 gene function. The cdc2 and CDC28 gene products (lower-case letters represent genes of Schizosaccharomyces pombe , and capital letters genes of Saccharomyces cerevisiae ) are functionally homologous, suggesting that the processes involved in traverse o f‘start’ are highly conserved. An analogous control may also exist in the G1 period of mammalian cells, suggesting that the ‘ start ’ control step, after which cells become committed to the mitotic cell cycle, may have been conserved through evolution.


2000 ◽  
Vol 149 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Andrew Bloecher ◽  
Kelly Tatchell

Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)–Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP–Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP–Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In α-factor treated cells, GFP–Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP–Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP–Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP–Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.


2017 ◽  
Vol 2 ◽  
pp. 2 ◽  
Author(s):  
Colette Fox ◽  
Juan Zou ◽  
Juri Rappsilber ◽  
Adele L. Marston

Background Gametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitosis, CDKs are inactivated. This low CDK state in late mitosis/G1 allows for critical preparatory events for DNA replication and centrosome/spindle pole body (SPB) duplication. However, their execution is inhibited until S phase, where further preparatory events are also prevented. This “licensing” ensures that both the chromosomes and the centrosomes/SPBs replicate exactly once per cell cycle, thereby maintaining constant ploidy. Crucially, between meiosis I and meiosis II, centrosomes/SPBs must be re-licensed, but DNA re-replication must be avoided. In budding yeast, the Cdc14 protein phosphatase triggers CDK down regulation to promote exit from mitosis. Cdc14 also regulates the meiosis I to meiosis II transition, though its mode of action has remained unclear. Methods Fluorescence and electron microscopy was combined with proteomics to probe SPB duplication in cells with inactive or hyperactive Cdc14. Results We demonstrate that Cdc14 ensures two successive nuclear divisions by re-licensing SPBs at the meiosis I to meiosis II transition. We show that Cdc14 is asymmetrically enriched on a single SPB during anaphase I and provide evidence that this enrichment promotes SPB re-duplication. Cells with impaired Cdc14 activity fail to promote extension of the SPB half-bridge, the initial step in morphogenesis of a new SPB. Conversely, cells with hyper-active Cdc14 duplicate SPBs, but fail to induce their separation. Conclusion Our findings implicate reversal of key CDK-dependent phosphorylations in the differential licensing of cyclical events at the meiosis I to meiosis I transition.


1990 ◽  
Vol 10 (4) ◽  
pp. 1358-1366
Author(s):  
L H Johnston ◽  
S L Eberly ◽  
J W Chapman ◽  
H Araki ◽  
A Sugino

Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division.


2005 ◽  
Vol 386 (7) ◽  
pp. 613-621 ◽  
Author(s):  
Eduard Ilyushik ◽  
David W. Pryce ◽  
Dawid Walerych ◽  
Tracy Riddell ◽  
Jane A. Wakeman ◽  
...  

Abstract Cohesins are a group of proteins that function to mediate correct chromosome segregation, DNA repair and meiotic recombination. This report presents the amino acid sequence for the Schizosaccharomyces pombe cohesin Psc3 based on the translation of the cDNA sequence, showing that the protein is smaller than previously predicted. Interestingly, comparison of the amino acid and DNA coding sequences of Psc3 with fission yeast Rec11 meiotic region-specific recombination activator shows that both intron positioning within the genes and the amino-terminal half of the two proteins are highly conserved. We demonstrate that although the intergenic region upstream of the psc3 + start codon contains a consensus sequence for the cell-cycle regulatory MluI cell-cycle box, psc3 + transcription is not differentially regulated during the mitotic cell cycle. Finally, we demonstrate that an epitope-tagged version of Psc3 undergoes no major changes during the mitotic cell cycle. However, instead we identify at least three distinct isoforms of Psc3, suggesting that post-translational modification of Psc3 contributes to the regulation of cohesion function.


1990 ◽  
Vol 10 (4) ◽  
pp. 1358-1366 ◽  
Author(s):  
L H Johnston ◽  
S L Eberly ◽  
J W Chapman ◽  
H Araki ◽  
A Sugino

Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division.


Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 49-68
Author(s):  
Yona Kassir ◽  
Giora Simchen

ABSTRACT Vegetative cells carrying the new temperature-sensitive mutation cdc40 arrest at the restrictive temperature with a medial nuclear division phenotype. DNA replication is observed under these conditions, but most cells remain sensitive to hydroxyurea and do not complete the ongoing cell cycle if the drug is present during release from the temperature block. It is suggested that the cdc40 lesion affects an essential function in DNA synthesis. Normal meiosis is observed at the permissive temperature in cdc40 homozygotes. At the restrictive temperature, a full round of premeiotic DNA replication is observed, but neither commitment to recombination nor later meiotic events occur. Meiotic cells that are already committed to the recombination process at the permissive temperature do not complete it if transferred to the restrictive temperature before recombination is realized. These temperature shift-up experiments demonstrate that the CDC40 function is required for the completion of recombination events, as well as for the earlier stage of recombination commitment. Temperature shift-down experiments with cdc40 homozygotes suggest that meiotic segregation depends on the final events of recombination rather than on commitment to recombination.


Sign in / Sign up

Export Citation Format

Share Document