scholarly journals MEIOTIC RECOMBINATION AND DNA SYNTHESIS IN A NEW CELL CYCLE MUTANT OF SACCHAROMYCES CEREVISIAE

Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 49-68
Author(s):  
Yona Kassir ◽  
Giora Simchen

ABSTRACT Vegetative cells carrying the new temperature-sensitive mutation cdc40 arrest at the restrictive temperature with a medial nuclear division phenotype. DNA replication is observed under these conditions, but most cells remain sensitive to hydroxyurea and do not complete the ongoing cell cycle if the drug is present during release from the temperature block. It is suggested that the cdc40 lesion affects an essential function in DNA synthesis. Normal meiosis is observed at the permissive temperature in cdc40 homozygotes. At the restrictive temperature, a full round of premeiotic DNA replication is observed, but neither commitment to recombination nor later meiotic events occur. Meiotic cells that are already committed to the recombination process at the permissive temperature do not complete it if transferred to the restrictive temperature before recombination is realized. These temperature shift-up experiments demonstrate that the CDC40 function is required for the completion of recombination events, as well as for the earlier stage of recombination commitment. Temperature shift-down experiments with cdc40 homozygotes suggest that meiotic segregation depends on the final events of recombination rather than on commitment to recombination.

1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1105-1115
Author(s):  
Xiaowei Dou ◽  
Dongliang Wu ◽  
Weiling An ◽  
Jonathan Davies ◽  
Shahr B Hashmi ◽  
...  

Abstract Unlike Pho85 of Saccharomyces cerevisiae, the highly related PHOA cyclin-dependent kinase (CDK) of Aspergillus nidulans plays no role in regulation of enzymes involved in phosphorous acquisition but instead modulates differentiation in response to environmental conditions, including limited phosphorous. Like PHO85, Aspergillus phoA is a nonessential gene. However, we find that expression of dominant-negative PHOA inhibits growth, suggesting it may have an essential but redundant function. Supporting this we have identified another cyclin-dependent kinase, PHOB, which is 77% identical to PHOA. Deletion of phoB causes no phenotype, even under phosphorous-limited growth conditions. To investigate the function of phoA/phoB, double mutants were selected from a cross of strains containing null alleles and by generating a temperature-sensitive allele of phoA in a ΔphoB background. Double-deleted ascospores were able to germinate but had a limited capacity for nuclear division, suggesting a cell cycle defect. Longer germination revealed morphological defects. The temperature-sensitive phoA allele caused both nuclear division and polarity defects at restrictive temperature, which could be complemented by expression of mammalian CDK5. Therefore, an essential function exists in A. nidulans for the Pho85-like kinase pair PHOA and PHOB, which may involve cell cycle control and morphogenesis.


1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601 ◽  
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


1995 ◽  
Vol 6 (6) ◽  
pp. 741-756 ◽  
Author(s):  
S Loo ◽  
C A Fox ◽  
J Rine ◽  
R Kobayashi ◽  
B Stillman ◽  
...  

This report describes the isolation of ORC5, the gene encoding the fifth largest subunit of the origin recognition complex, and the properties of mutants with a defective allele of ORC5. The orc5-1 mutation caused temperature-sensitive growth and, at the restrictive temperature, caused cell cycle arrest. At the permissive temperature, the orc5-1 mutation caused an elevated plasmid loss rate that could be suppressed by additional tandem origins of DNA replication. The sequence of ORC5 revealed a potential ATP binding site, making Orc5p a candidate for a subunit that mediates the ATP-dependent binding of ORC to origins. Genetic interactions among orc2-1 and orc5-1 and other cell cycle genes provided further evidence for a role for the origin recognition complex (ORC) in DNA replication. The silencing defect caused by orc5-1 strengthened previous connections between ORC and silencing, and combined with the phenotypes caused by orc2 mutations, suggested that the complex itself functions in both processes.


1977 ◽  
Vol 75 (2) ◽  
pp. 355-365 ◽  
Author(s):  
B J Reid ◽  
L H Hartwell

The capacity of haploid a yeast cells to mate (fuse with a haploid strain of alpha mating type followed by nuclear fusion to produce a diploid cell) was assessed for a variety of temperature-sensitive cell division cycle (cdc) mutants at the permissive and restrictive temperatures. Asynchronous populations of some mutants do not mate at the restrictive temperature, and these mutants define genes (cdc 1, 4, 24, and 33) that are essential both for the cell cycle and for mating. For most cdc mutants, asynchronous populations mate well at the restrictive temperature while populations synchronized at the cdc block do not. Populations of a mutant carrying the cdc 28 mutation mate well at the restrictive temperature after synchronization at the cdc 28 step. These results suggest that mating can occur from the cdc 28 step, the same step at which mating factors arrest cell cycle progress. The cell cycle interval in which mating can occur may or may not extend to the immediately succeeding and diverging steps (cdc 4 and cdc 24). High frequency mating does not occur in the interval of the cell cycle extending from the step before the initiation of DNA synthesis (cdc 7) through DNA synthesis (cdc 2, 8, and 21), medial nuclear division (cdc 13), and late nuclear division (cdc 14 and 15).


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.


2000 ◽  
Vol 113 (7) ◽  
pp. 1199-1211
Author(s):  
G. Buscemi ◽  
F. Saracino ◽  
D. Masnada ◽  
M.L. Carbone

The organization of the actin cytoskeleton is essential for several cellular processes. Here we report the characterization of a Saccharomyces cerevisiae novel gene, SDA1, encoding a highly conserved protein, which is essential for cell viability and is localized in the nucleus. Depletion or inactivation of Sda1 cause cell cycle arrest in G(1) by blocking both budding and DNA replication, without loss of viability. Furthermore, sda1-1 temperature-sensitive mutant cells arrest at the non-permissive temperature mostly without detectable structures of polymerized actin, although a normal actin protein level is maintained, indicating that Sda1 is required for proper organization of the actin cytoskeleton. To our knowledge, this is the first mutation shown to cause such a phenotype. Recovery of Sda1 activity restores proper assembly of actin structures, as well as budding and DNA replication. Furthermore we show that direct actin perturbation, either in sda1-1 or in cdc28-13 cells released from G(1) block, prevents recovery of budding and DNA replication. We also show that the block in G(1) caused by loss of Sda1 function is independent of Swe1. Altogether our results suggest that disruption of F-actin structure can block cell cycle progression in G(1) and that Sda1 is involved in the control of the actin cytoskeleton.


1990 ◽  
Vol 10 (4) ◽  
pp. 1358-1366
Author(s):  
L H Johnston ◽  
S L Eberly ◽  
J W Chapman ◽  
H Araki ◽  
A Sugino

Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division.


Sign in / Sign up

Export Citation Format

Share Document