scholarly journals Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas.

1983 ◽  
Vol 96 (5) ◽  
pp. 1451-1463 ◽  
Author(s):  
R J Schmidt ◽  
C B Richardson ◽  
N W Gillham ◽  
J E Boynton

Cells of Chlamydomonas reinhardtii were pulse-labeled in vivo in the presence of inhibitors of cytoplasmic (anisomycin) or chloroplast (lincomycin) protein synthesis to ascertain the sites of synthesis of chloroplast ribosomal proteins. Fluorographs of the labeled proteins, resolved on two-dimensional (2-D) charge/SDS and one-dimensional (1-D) SDS-urea gradient gels, demonstrated that five to six of the large subunit proteins are products of chloroplast protein synthesis while 26 to 27 of the large subunit proteins are synthesized on cytoplasmic ribosomes. Similarly, 14 of 31 small subunit proteins are products of chloroplast protein synthesis, while the remainder are synthesized in the cytoplasm. The 20 ribosomal proteins shown to be made in the chloroplast of Chlamydomonas more than double the number of proteins known to be synthesized in the chloroplast of this alga.

1985 ◽  
Vol 5 (5) ◽  
pp. 1093-1099
Author(s):  
R J Schmidt ◽  
N W Gillham ◽  
J E Boynton

In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.


1985 ◽  
Vol 5 (5) ◽  
pp. 1093-1099 ◽  
Author(s):  
R J Schmidt ◽  
N W Gillham ◽  
J E Boynton

In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.


1990 ◽  
Vol 68 (5) ◽  
pp. 839-845
Author(s):  
S. Ramagopal

The distribution of ribosomal proteins in monosomes, polysomes, the postribosomal cytosol, and the nucleus was determined during steady-state growth in vegetative amoebae. A partitioning of previously reported cell-specific ribosomal proteins between monosomes and polysomes was observed. L18, one of the two unique proteins in amoeba ribosomes, was distributed equally among monosomes and polysomes. However S5, the other unique protein, was abundant in monosomes but barely visible in polysomes. Of the developmentally regulated proteins, D and S6 were detectable only in polysomes and S14 was more abundant in monosomes. The cystosol revealed no ribosomal proteins. On staining of the nuclear proteins with Coomassie blue, about 18, 7 from 40S subunit and 11 from 60S subunit, were identified as ribosomal proteins. By in vivo labeling of the proteins with [35S]methionine, 24 of the 34 small subunit proteins and 33 of the 42 large subunit proteins were localized in the nucleus. For the majority of the ribosomal proteins, the apparent relative stoichiometry was similar in nuclear preribosomal particles and in cytoplasmic ribosomes. However, in preribosomal particles the relative amount of four proteins (S11, S30, L7, and L10) was two- to four-fold higher and of eight proteins (S14, S15, S20, S34, L12, L27, L34, and L42) was two- to four-fold lower than that of cytoplasmic ribosomes.Key words: cellular slime mold, cell-specific ribosomal proteins, nucleus, cytoplasm, two-dimensional gel electrophoresis.


Planta ◽  
2001 ◽  
Vol 212 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Shailendra K. Bhadula ◽  
Thomas E. Elthon ◽  
Jeffrey E. Habben ◽  
Timothy G. Helentjaris ◽  
Shuping Jiao ◽  
...  

1975 ◽  
Vol 146 (3) ◽  
pp. 675-685 ◽  
Author(s):  
S G Siddell ◽  
R J Ellis

The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic ‘map’ of its L-(35S)methionine-labelled peptides with the tryptic ‘map’ of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.


2013 ◽  
Vol 288 (20) ◽  
pp. 13951-13959 ◽  
Author(s):  
Yan Zhang ◽  
Xiuxiang An ◽  
JoAnne Stubbe ◽  
Mingxia Huang

The small subunit (β2) of class Ia ribonucleotide reductase (RNR) houses a diferric tyrosyl cofactor (Fe2III-Y•) that initiates nucleotide reduction in the large subunit (α2) via a long range radical transfer (RT) pathway in the holo-(α2)m(β2)n complex. The C-terminal tails of β2 are predominantly responsible for interaction with α2, with a conserved tyrosine residue in the tail (Tyr356 in Escherichia coli NrdB) proposed to participate in cofactor assembly/maintenance and in RT. In the absence of structure of any holo-RNR, the role of the β tail in cluster assembly/maintenance and its predisposition within the holo-complex have remained unknown. In this study, we have taken advantage of the unusual heterodimeric nature of the Saccharomyces cerevisiae RNR small subunit (ββ′), of which only β contains a cofactor, to address both of these issues. We demonstrate that neither β-Tyr376 nor β′-Tyr323 (Tyr356 equivalent in NrdB) is required for cofactor assembly in vivo, in contrast to the previously proposed mechanism for E. coli cofactor maintenance and assembly in vitro. Furthermore, studies with reconstituted-ββ′ and an in vivo viability assay show that β-Tyr376 is essential for RT, whereas Tyr323 in β′ is not. Although the C-terminal tail of β′ is dispensable for cofactor formation and RT, it is essential for interactions with β and α to form the active holo-RNR. Together the results provide the first evidence of a directed orientation of the β and β′ C-terminal tails relative to α within the holoenzyme consistent with a docking model of the two subunits and argue against RT across the β β′ interface.


Nature ◽  
1975 ◽  
Vol 254 (5495) ◽  
pp. 13-13 ◽  
Author(s):  
Harry Smith

Sign in / Sign up

Export Citation Format

Share Document