scholarly journals A membrane cytoskeleton from Dictyostelium discoideum. II. Integral proteins mediate the binding of plasma membranes to F-actin affinity beads.

1984 ◽  
Vol 99 (1) ◽  
pp. 58-70 ◽  
Author(s):  
E J Luna ◽  
C M Goodloe-Holland ◽  
H M Ingalls

In novel, low-speed sedimentation assays, highly purified, sonicated Dictyostelium discoideum plasma membrane fragments bind to F-actin beads (fluorescein-labeled F-actin on antifluorescein IgG-Sephacryl S-1000 beads). Binding was found to be (a) specific, since beads containing bound fluorescein-labeled ovalbumin or beads without bound fluorescein-labeled protein do not bind membranes, (b) saturable at approximately 0.6 microgram of membrane protein per microgram of bead-bound F-actin, (c) rapid with a t1/2 of 4-20 min, and (d) apparently of reasonable affinity since the off rate is too slow to be measured by present techniques. Using low-speed sedimentation assays, we found that sonicated plasma membrane fragments, after extraction with chaotropes, still bind F-actin beads. Heat-denatured membranes, proteolyzed membranes, and D. discoideum lipid vesicles did not bind F-actin beads. These results indicate that integral membrane proteins are responsible for the binding between sonicated membrane fragments and F-actin on beads. This finding agrees with the previous observation that integral proteins mediate interactions between D. discoideum plasma membranes and F-actin in solution (Luna, E.J., V. M. Fowler, J. Swanson, D. Branton, and D. L. Taylor, 1981, J. Cell Biol., 88:396-409). We conclude that low-speed sedimentation assays using F-actin beads are a reliable method for monitoring the associations between F-actin and membranes. Since these assays are relatively quantitative and require only micrograms of membranes and F-actin, they are a significant improvement over other existing techniques for exploring the biochemical details of F-actin-membrane interactions. Using F-actin beads as an affinity column for actin-binding proteins, we show that at least 12 integral polypeptides in D. discoideum plasma membranes bind to F-actin directly or indirectly. At least four of these polypeptides appear to span the membrane and are thus candidates for direct transmembrane links between the cytoskeleton and the cell surface.

1981 ◽  
Vol 88 (2) ◽  
pp. 396-409 ◽  
Author(s):  
E J Luna ◽  
V M Fowler ◽  
J Swanson ◽  
D Branton ◽  
D L Taylor

Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre-extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat-denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat-denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X-100 extraction of isolated D. discoideum membranes results in a Triton-insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane.


1987 ◽  
Vol 105 (4) ◽  
pp. 1741-1751 ◽  
Author(s):  
L J Wuestehube ◽  
E J Luna

F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.


1989 ◽  
Vol 109 (4) ◽  
pp. 1519-1528 ◽  
Author(s):  
H Miyata ◽  
B Bowers ◽  
E D Korn

Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F-actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI-extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP-sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin-binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.


1993 ◽  
Vol 120 (4) ◽  
pp. 909-922 ◽  
Author(s):  
C P Chia ◽  
A Shariff ◽  
S A Savage ◽  
E J Luna

Ponticulin, an F-actin binding transmembrane glycoprotein in Dictyostelium plasma membranes, was isolated by detergent extraction from cytoskeletons and purified to homogeneity. Ponticulin is an abundant membrane protein, averaging approximately 10(6) copies/cell, with an estimated surface density of approximately 300 per microns2. Ponticulin solubilized in octylglucoside exhibited hydrodynamic properties consistent with a ponticulin monomer in a spherical or slightly ellipsoidal detergent micelle with a total molecular mass of 56 +/- 6 kD. Purified ponticulin nucleated actin polymerization when reconstituted into Dictyostelium lipid vesicles, but not when a number of commercially available lipids and lipid mixtures were substituted for the endogenous lipid. The specific activity was consistent with that expected for a protein comprising 0.7 +/- 0.4%, by mass, of the plasma membrane protein. Ponticulin in octylglucoside micelles bound F-actin but did not nucleate actin assembly. Thus, ponticulin-mediated nucleation activity was sensitive to the lipid environment, a result frequently observed with transmembrane proteins. At most concentrations of Dictyostelium lipid, nucleation activity increased linearly with increasing amounts of ponticulin, suggesting that the nucleating species is a ponticulin monomer. Consistent with previous observations of lateral interactions between actin filaments and Dictyostelium plasma membranes, both ends of ponticulin-nucleated actin filaments appeared to be free for monomer assembly and disassembly. Our results indicate that ponticulin is a major membrane protein in Dictyostelium and that, in the proper lipid matrix, it is sufficient for lateral nucleation of actin assembly. To date, ponticulin is the only integral membrane protein known to directly nucleate actin polymerization.


1990 ◽  
Vol 110 (3) ◽  
pp. 681-692 ◽  
Author(s):  
A Shariff ◽  
E J Luna

In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1-pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre-activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.


1996 ◽  
Vol 7 (2) ◽  
pp. 261-272 ◽  
Author(s):  
U Gottwald ◽  
R Brokamp ◽  
I Karakesisoglou ◽  
M Schleicher ◽  
A A Noegel

In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.


1994 ◽  
Vol 107 (9) ◽  
pp. 2393-2401 ◽  
Author(s):  
M. Fechheimer ◽  
H.M. Ingalls ◽  
R. Furukawa ◽  
E.J. Luna

‘Contact regions’ are plasma membrane domains derived from areas of intercellular contact between aggregating Dictyostelium amebae (H.M. Ingalls et al. (1986). Proc. Nat. Acad. Sci. USA 83, 4779). Purified contact regions contain a prominent actin-binding protein with an M(r) of 34,000. Immunoblotting with monoclonal antibodies identifies this polypeptide as a 34,000 M(r) actin-bundling protein (known as 30 kDa protein), previously shown to be enriched in filopodia (M. Fechheimer (1987). J. Cell Biol. 104, 1539). About four times more 30 kDa protein by mass is associated with contact regions than is found in total plasma membranes isolated from aggregating cells. In agreement with these observations, immunostaining of the 30 kDa protein in aggregating cells reveals a prominent localization along the plasma membrane at sites of intercellular contact. By contrast, alpha-actinin does not appear to be significantly enriched at sites of cell to cell contact. Binding experiments using purified plasma membranes, actin and 30 kDa protein indicate that the 30 kDa protein is associated with the plasma membrane primarily through interactions with actin filaments. Calcium ions are known to decrease the interaction of actin with 30 kDa protein in solution. Surprisingly, membrane-associated complexes of actin and the 30 kDa protein are much less sensitive to dissociation by micromolar levels of free calcium ions than are complexes in solutions lacking membranes.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 99 (1) ◽  
pp. 71-78 ◽  
Author(s):  
C M Goodloe-Holland ◽  
E J Luna

The binding between sonicated Dictyostelium discoideum plasma membrane fragments and F-actin on Sephacryl S-1000 beads was found to be competitively inhibited by myosin subfragment-1. This inhibition is MgATP-sensitive, exhibits a Ki of approximately 5 X 10(-8) M, and is reciprocal, since membranes inhibit the binding of 125I-heavy meromyosin to F-actin on beads. These experiments demonstrate that membrane binding and S-1 binding to F-actin on beads are mutually exclusive and, therefore, that the membrane fragments bind predominantly to the sides, rather than to the ends, of the actin filaments. This conclusion is supported by electron micrographs that show many lateral associations between membrane fragments and bead-associated actin filaments. Such lateral associations could play an important role in the organization and lateral movement of membrane proteins by the cytomusculature.


1977 ◽  
Vol 55 (12) ◽  
pp. 1233-1236 ◽  
Author(s):  
N. R. Gilkes ◽  
G. Weeks

A novel procedure was recently described for the purification of plasma membranes of Dictyostelium discoideum (Gilkes, N. R. &Weeks, G. (1977) Biochim. Biophys. Acta 464, 142–156). Considerable enrichment of plasma membrane marker enzymes was achieved, but since purified mitochondrial and endoplasmic reticulum fractions were unavailable, it was not possible to accurately assess the contamination level of these organelles. We have therefore slightly modified the plasma membrane preparation procedure, improving purification, and have prepared partially purified mitochondrial and endoplasmic reticulum fractions. The data suggest that the contamination of the plasma membranes by endoplasmic reticulum membranes is no greater than 10%, and probably considerably less. No mitochondrial contamination is detectable.


Sign in / Sign up

Export Citation Format

Share Document