scholarly journals CELLS INVOLVED IN THE IMMUNE RESPONSE

1968 ◽  
Vol 128 (5) ◽  
pp. 1099-1128 ◽  
Author(s):  
Sharwan K. Singhal ◽  
Maxwell Richter

Cell suspensions of immune rabbit lymph nodes and spleen were capable of undergoing blastogenesis and mitosis and of incorporating tritiated thymidine when maintained in culture with the specific antigen in vitro. They did not respond to other, non-cross-reacting antigens. The blastogenic response obtained with immune lymph node cells could be correlated with the antibody synthesizing capacity of fragment cultures prepared from the same lymph nodes. Cell suspensions of immune bone marrow responded to non-cross-reacting antigens only whereas cell suspensions of immune thymus, sacculus rotundus, and appendix did not respond when exposed to any of the antigens tested. On the other hand, neither fragments nor cell suspensions prepared from lymph nodes, spleen, and thymus of normal, unimmunized rabbits responded with antibody formation and blastogenesis when exposed to any of the antigens. However, normal bone marrow cells responded with marked blastogenesis and tritiated thymidine uptake. The specificity of this in vitro bone marrow response was demonstrated by the fact that the injection of a protein antigen in vivo resulted in the loss of reactivity by the marrow cell to that particular antigen but not to the other, non-cross-reacting antigens. Furthermore, bone marrow cells of tolerant rabbits failed to respond to the specific antigen in vitro. It was also demonstrated that normal bone marrow cells incubated with antigen are capable of forming antibody which could be detected by the fluorescent antibody technique. This response of the bone marrow cells has been localized to the lymphocyte-rich fraction of the bone marrow. It is concluded that the bone marrow lymphocyte, by virtue of its capacity to react with blastogenesis and mitosis and with antibody formation upon initial exposure to the antigen, a capacity not possessed by lymphocytes of the other lymphoid organs, has a preeminent role in the sequence of cellular events culminating in antibody formation.

1973 ◽  
Vol 137 (2) ◽  
pp. 543-546 ◽  
Author(s):  
Akikazu Takada ◽  
Yumiko Takada

CBA/HT6T6 bone marrow cells (1 x 107) or CBA/H bone marrow cells (1 x 107) plus CBA/HT6T6 thymus cells (5 x 107) were injected intravenously into lethally (800 R) irradiated CBA/H mice. Chromosome analyses of dividing cells in the host lymphoid and myeloid organs were performed at intervals after irradiation. Donor marrow cells settled and proliferated in the host bone marrow, spleen, and lymph nodes soon after injection, but donor marrow cells did not proliferate in the host thymus until day 10; then host-type cells were quickly replaced by donor-type cells in the thymus by day 20. On the other hand, donor thymus cells settled and proliferated in the host thymus and lymph nodes soon after injection but they gradually disappeared from these organs. On day 20, a few donor-type dividing cells (of thymus origin) were found in the host lymphoid and myeloid organs.


Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 250-256 ◽  
Author(s):  
L Lu ◽  
HE Broxmeyer ◽  
PA Meyers ◽  
MA Moore ◽  
HT Thaler

Abstract An association has been established between human Ia-like antigenic determinants, expression during DNA synthesis on multipotential (CFU- GEMM) and erythroid (BFU-E) progenitor cells, and the regulatory action of acidic isoferritins in vitro. Treatment of human bone marrow cells with monoclonal anti-Ia (NE1–011) plus complement inhibited colony formation of CFU-GEMM) and BFU-E by 50%-70%. Reduction of colonies was similar whether bone marrow cells were exposed to anti-Ia plus complement, high specific tritiated thymidine (3HTdr), or acidic isoferritins. No further decrease was apparent with 3HTdr or acidic isoferritins after Ia-antigen+ CFU-GEMM or BFU-E were removed, or with anti-Ia plus complement or acidic isoferritins after S-phase CFU-GEMM or BFU-E were removed. Anti-Ia, in the absence of complement, had no effect on colony formation but blocked the inhibition of CFU-GEMM and BFU-E by acidic isoferritins. Demonstration of Ia-antigens on BFU-E and inhibition of BFU-E by acidic isoferritins appeared to require the presence of phytohemmagglutinin leukocyte conditioned medium (PHA-LCM) in the culture medium during the 14-day incubation period. these results implicate Ia-antigen+ cells, acidic isoferritins, and PHA-LCM in the regulation of multipotential and erythroid progenitor cells in vitro.


Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 250-256
Author(s):  
L Lu ◽  
HE Broxmeyer ◽  
PA Meyers ◽  
MA Moore ◽  
HT Thaler

An association has been established between human Ia-like antigenic determinants, expression during DNA synthesis on multipotential (CFU- GEMM) and erythroid (BFU-E) progenitor cells, and the regulatory action of acidic isoferritins in vitro. Treatment of human bone marrow cells with monoclonal anti-Ia (NE1–011) plus complement inhibited colony formation of CFU-GEMM) and BFU-E by 50%-70%. Reduction of colonies was similar whether bone marrow cells were exposed to anti-Ia plus complement, high specific tritiated thymidine (3HTdr), or acidic isoferritins. No further decrease was apparent with 3HTdr or acidic isoferritins after Ia-antigen+ CFU-GEMM or BFU-E were removed, or with anti-Ia plus complement or acidic isoferritins after S-phase CFU-GEMM or BFU-E were removed. Anti-Ia, in the absence of complement, had no effect on colony formation but blocked the inhibition of CFU-GEMM and BFU-E by acidic isoferritins. Demonstration of Ia-antigens on BFU-E and inhibition of BFU-E by acidic isoferritins appeared to require the presence of phytohemmagglutinin leukocyte conditioned medium (PHA-LCM) in the culture medium during the 14-day incubation period. these results implicate Ia-antigen+ cells, acidic isoferritins, and PHA-LCM in the regulation of multipotential and erythroid progenitor cells in vitro.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Abstract Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3395
Author(s):  
Ting Bei ◽  
Xusong Cao ◽  
Yun Liu ◽  
Jinmei Li ◽  
Haihua Luo ◽  
...  

Total body irradiation is a standard procedure of bone marrow transplantation (BMT) which causes a rapid increase in reactive oxygen species (ROS) in the bone marrow microenvironment during BMT. The increase in ROS reduces the engraftment ability of donor cells, thereby affecting the bone marrow recovery of recipients after BMT. In the early weeks following transplantation, recipients are at high risk of severe infection due to weakened hematopoiesis. Thus, it is imperative to improve engraftment capacity and accelerate bone marrow recovery in BMT recipients. In this study, we constructed recombinant copper/zinc superoxide dismutase 1 (SOD1) fused with the cell-penetrating peptide (CPP), the trans-activator of transcription (Tat), and showed that this fusion protein has penetrating ability and antioxidant activity in both RAW264.7 cells and bone marrow cells in vitro. Furthermore, irradiated mice transplanted with SOD1-Tat-treated total bone marrow donor cells showed an increase in total bone marrow engraftment capacity two weeks after transplantation. This study explored an innovative method for enhancing engraftment efficiency and highlights the potential of CPP-SOD1 in ROS manipulation during BMT.


1996 ◽  
Vol 90 (2) ◽  
pp. 176-178 ◽  
Author(s):  
Luba Trakhtenbrot ◽  
Yoram Neumann ◽  
Matilda Mandel ◽  
Amos Toren ◽  
Nelly Gipsh ◽  
...  

1969 ◽  
Vol 129 (5) ◽  
pp. 1029-1044 ◽  
Author(s):  
Cesare Bosman ◽  
Joseph D. Feldman ◽  
Edgar Pick

Cell suspensions from draining lymph nodes of immune and nonimmune rats were reacted in vitro with 125I-labeled antigens. In light microscopic radioautographs of smears, 17% of the immunized cells were tagged by specific antigen; 2.0% of control cells were positive. In electron microscopic radioautographs, 90% of the labeled elements from immune donors were lymphocytes, blast and plasma cells; 10% were monocytes-macrophages or other elements, including naked nuclei. 15% of the labeled cells from control materials were lymphocytes and plasma cells, while 85% were monocytes-macrophages and naked nuclei. Within cell suspensions derived from immunized animals there were almost twice as many lymphocytes marked by isotope as plasma cells, and the lymphocytes ranged in morphology from mature monoribosomal elements to immature polyribosomal cells. Antibody-forming cells fixed labeled antigen at their surfaces. The monocyte-macrophage class was distinguished by a high mean grain count and by distribution of grains within cytoplasmic vacuoles and lysosomes.


Sign in / Sign up

Export Citation Format

Share Document