scholarly journals DELETION OF HAPTEN-BINDING CELLS BY A HIGHLY RADIOACTIVE 125I CONJUGATE

1972 ◽  
Vol 136 (2) ◽  
pp. 305-317 ◽  
Author(s):  
Dov Theo Golan ◽  
Yves Borel

Exposure of normal mouse spleen cells in vitro to highly 125I-labeled dinitrophenyl (DNP)-protein carrier conjugates specifically inactivated cells able to mount an immune response to that hapten after in vivo challenge. The deletion was hapten specific and independent of the radioactive carrier to which the hapten was bound. DNP-binding cells were inactivated by radioactivity that was not part of the hapten, but was solely confined to the carrier moiety. The deletion of the anti-DNP response lasted 2–3 wk and could be specifically inhibited.

1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 851-856 ◽  
Author(s):  
SA Burstein ◽  
SK Erb ◽  
JW Adamson ◽  
LA Harker

Abstract Mice injected chronically with antiplatelet serum develop an increase in the number of megakaryocytic progenitor cells compared to animals given normal rabbit serum. To examine the specificity of this response, progenitor cells giving rise to megakaryocyte, granulocyte-macrophage, erythroid, and mixed-cell colonies were assayed after injection of various heterosera or saline. All four colony types increased in the serum-treated groups. Since the in vitro proliferation of hematopoietic progenitor cells is promoted by supernatants of mitogen-stimulated spleen cells, we hypothesized that the immune response following antiserum administration resulted in the in vivo activation of T lymphocytes which produced or led to the production of colony stimulating activities. To test this hypothesis, cyclosporin A, a preferential inhibitor of T lymphocyte function, was given to mice concurrently with antiserum and also added to spleen cell cultures in the presence of pokeweed mitogen. Cyclosporin A abrogated the antiserum- related increases in progenitor cell numbers in vivo and the production of colony stimulating activity in vitro. The results suggest that the immune response related to antiserum administration results in the in vivo production of hematopoietic colony stimulating activities that may be identical to those produced in vitro by mitogen-stimulation of spleen cells.


1963 ◽  
Vol 117 (3) ◽  
pp. 401-423 ◽  
Author(s):  
John E. Coe ◽  
S. B. Salvin

"Gastric feeding" of adult guinea pigs with dinitrochlorobenzene (DCB) resulted in a specific unresponsiveness to sensitization with the specific contact hapten. The more DCB gastric-fed to a guinea pig, the more complete the unresponsiveness to the hapten. When mycobacteria were incorporated into the sensitizing emulsion, the state of unresponsiveness to the dinitrophenyl (DNP) group was less apparent. When animals gastric-fed with DCB were later sensitized with an in vitro conjugate of the hapten combined with a heterologous protein such as dinitrophenyl-hen egg albumin (DNP·HEA), an immune response similar to that in the controls occurred both to the hapten and to the protein carrier. However, when the tolerant animals were sensitized with a conjugate containing a homologous protein carrier such as dinitrophenyl guinea pig serum (DNP·GPS), they showed diminished immune responses in comparison with those in the non-tolerant controls. The presence of circulating anti-DNP antibodies from sensitization with DNP-HEA did not affect the unresponsiveness to the specific contact hapten, regardless of whether these antibodies are present before or after induction of tolerance. Sensitization with picryl chloride (PiCl) (a cross-reacting hapten), either before or after gastric feeding of DCB, did not affect the state of unresponsiveness to DNP. Similarly when the DNP-tolerant animal was sensitized with PiCl, the subsequent immune response was similar to that in the controls; cross-reactions with the DNP group both in the contact and circulating antibody phase occurred at a rate similar to that in the controls. The foregoing relationships can be explained by presuming that, upon the gastric feeding of DCB, an in vivo conjugate is formed with a somatic protein, which determines the basic specificity of the tolerance. Acquired tolerance seems to manifest an immunologic specificity similar to that of delayed hypersensitivity, a relationship not unexpected if delayed hypersensitivity is an early phase of the immune response.


1970 ◽  
Vol 131 (2) ◽  
pp. 247-274 ◽  
Author(s):  
Marc Feldmann ◽  
Erwin Diener

Antibody-mediated suppression of the in vitro immune response to polymerized flagellin of Salmonella adelaide and to sheep erythrocytes was studied at the cellular level. Normal mouse spleen cells, preincubated in vitro with mixtures of antigen and antibody for short periods of time before being washed, did not respond to an optimal antigenic challenge in vitro, whereas similar cells treated with antibody alone gave a normal response. The degree of immune suppression was found to depend on the time of preincubation. Significant immune suppression could be induced in as short a time as 15 min, whereas profound suppression (90%) required the incubation of cells with mixtures of antigen and antibody for 4–6 hr. Mouse spleen cells treated similarly were also unable to respond subsequently to the antigen upon transfer to lethally irradiated hosts, as measured at both the level of the antigen-reactive cell and that of serum antibody production. These results were taken as evidence that in vitro an effect of antibody-mediated suppression occurred at the level of the immunocompetent cell. Similarities between immune tolerance and antibody-mediated suppression in vitro were described, and the significance of the findings discussed in the light of current concepts of the mechanism of antibody-mediated suppression.


1983 ◽  
Vol 157 (3) ◽  
pp. 1006-1019 ◽  
Author(s):  
J L Van Snick ◽  
V Stassin ◽  
B de Lestré

The specificity of polyclonal mouse rheumatoid factors (RF) was analyzed by competition experiments with heat-aggregated mouse IgG subclasses. The RF spontaneously produced by three normal mouse strains (129/Sv, CBA/Ht, and C57Bl/6) and by two strains with autoimmune diseases (MRL/l and NZB) were found to consist of distinct non-cross-reactive antibody subpopulations each specific for one IgG subclass. The sera of the normal strains contained IgG1- and IgG2a-specific RF. The autoimmune strains produced an additional variety of RF that was specific for The autoimmune strains produced an additional variety of RF that was specific for IgG2b. Also, the RF secreted by spleen cells of various normal strains after in vitro polyclonal activation with lipopolysaccharide could be resolved into distinct subpopulations specific for IgG1 or IgG2a. These results were confirmed by the analysis of monoclonal RF derived from BALB/c, C57Bl/6, CBA/Ht, and 129/Sv mice: of 73 hybridomas with RF activity, 71 displayed a strict subclass specificity. The subclass predominantly recognized depended on the origin of the spleen cells used to generate the hybridomas. After polyclonal activation in vitro, a broad spectrum of different specificities was obtained with 16 RF specific for IgG1, 13 for IgG2a, and 4 for IgG2b. In contrast, 27 of 28 monoclonal RF derived from 129/Sv and BALB/c mice without prior polyclonal activation were specific for IgG2a, and of these 75% were allotype specific since they failed to react with IgG2a of the b allotype. These results demonstrate the importance of subclass specificity in the production of RF in vivo. With the exception of the IgG2b-specific clones, all these monoclonal RF reacted preferentially with heat-aggregated or antigen-bound IgG. Among the hybridomas generated by the fusion of in vitro polyclonally activated spleen cells of 4-wk-old mice, the frequency of clones with RF activity was at least 40 times higher than that of clones specific for mouse IgM, human IgG, ovalbumin, and hen lysozyme.


1971 ◽  
Vol 133 (4) ◽  
pp. 821-833 ◽  
Author(s):  
Irun R. Cohen ◽  
Amiela Globerson ◽  
Michael Feldman

This paper reports a model system of cellular immunity in which allosensitization of mouse spleen cells is induced in vitro. Allosensitization was achieved by culturing spleen cells upon monolayers of allogeneic fibroblasts. The ability of the spleen cells to inhibit the growth of tumor allografts in vivo served as a functional assay of sensitization. We found that unsensitized spleen cells or spleen cells sensitized against unrelated fibroblast antigens had no inhibitory effect on the growth of allogeneic fibrosarcoma cells when they were injected together into irradiated recipients. In contrast, spleen cells which were specifically allosensitized in vitro were found to be highly effective in inhibiting the growth of an equal number of allogeneic tumor cells. Several times more spleen cells from mice sensitized in vivo were required to produce a similar immune effect. This confirms the findings of previous studies which indicate that sensitization in cell culture can promote the selection of specifically sensitized lymphocytes. Preincubating sensitizing fibroblasts with allo-antisera blocked the allosensitization of spleen cells. This suggests that antibodies binding to fibroblasts may inhibit the induction of sensitization by competing with lymphocytes for antigenic sites. Mouse spleen cells which were able to recognize and reject tumor allografts in vivo were unable to cause lysis of target fibroblasts in vitro. Such fibroblasts, however, were susceptible to lysis by rat lymphoid cells sensitized by a similar in vitro method. These findings indicate that the conditions required for lymphocyte-mediated lysis of target cells may not be directly related to the processes of antigen recognition and allograft rejection in vivo.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 851-856 ◽  
Author(s):  
SA Burstein ◽  
SK Erb ◽  
JW Adamson ◽  
LA Harker

Mice injected chronically with antiplatelet serum develop an increase in the number of megakaryocytic progenitor cells compared to animals given normal rabbit serum. To examine the specificity of this response, progenitor cells giving rise to megakaryocyte, granulocyte-macrophage, erythroid, and mixed-cell colonies were assayed after injection of various heterosera or saline. All four colony types increased in the serum-treated groups. Since the in vitro proliferation of hematopoietic progenitor cells is promoted by supernatants of mitogen-stimulated spleen cells, we hypothesized that the immune response following antiserum administration resulted in the in vivo activation of T lymphocytes which produced or led to the production of colony stimulating activities. To test this hypothesis, cyclosporin A, a preferential inhibitor of T lymphocyte function, was given to mice concurrently with antiserum and also added to spleen cell cultures in the presence of pokeweed mitogen. Cyclosporin A abrogated the antiserum- related increases in progenitor cell numbers in vivo and the production of colony stimulating activity in vitro. The results suggest that the immune response related to antiserum administration results in the in vivo production of hematopoietic colony stimulating activities that may be identical to those produced in vitro by mitogen-stimulation of spleen cells.


Sign in / Sign up

Export Citation Format

Share Document