scholarly journals Isotypic and allotypic specificity of mouse rheumatoid factors.

1983 ◽  
Vol 157 (3) ◽  
pp. 1006-1019 ◽  
Author(s):  
J L Van Snick ◽  
V Stassin ◽  
B de Lestré

The specificity of polyclonal mouse rheumatoid factors (RF) was analyzed by competition experiments with heat-aggregated mouse IgG subclasses. The RF spontaneously produced by three normal mouse strains (129/Sv, CBA/Ht, and C57Bl/6) and by two strains with autoimmune diseases (MRL/l and NZB) were found to consist of distinct non-cross-reactive antibody subpopulations each specific for one IgG subclass. The sera of the normal strains contained IgG1- and IgG2a-specific RF. The autoimmune strains produced an additional variety of RF that was specific for The autoimmune strains produced an additional variety of RF that was specific for IgG2b. Also, the RF secreted by spleen cells of various normal strains after in vitro polyclonal activation with lipopolysaccharide could be resolved into distinct subpopulations specific for IgG1 or IgG2a. These results were confirmed by the analysis of monoclonal RF derived from BALB/c, C57Bl/6, CBA/Ht, and 129/Sv mice: of 73 hybridomas with RF activity, 71 displayed a strict subclass specificity. The subclass predominantly recognized depended on the origin of the spleen cells used to generate the hybridomas. After polyclonal activation in vitro, a broad spectrum of different specificities was obtained with 16 RF specific for IgG1, 13 for IgG2a, and 4 for IgG2b. In contrast, 27 of 28 monoclonal RF derived from 129/Sv and BALB/c mice without prior polyclonal activation were specific for IgG2a, and of these 75% were allotype specific since they failed to react with IgG2a of the b allotype. These results demonstrate the importance of subclass specificity in the production of RF in vivo. With the exception of the IgG2b-specific clones, all these monoclonal RF reacted preferentially with heat-aggregated or antigen-bound IgG. Among the hybridomas generated by the fusion of in vitro polyclonally activated spleen cells of 4-wk-old mice, the frequency of clones with RF activity was at least 40 times higher than that of clones specific for mouse IgM, human IgG, ovalbumin, and hen lysozyme.

1983 ◽  
Vol 157 (1) ◽  
pp. 202-218 ◽  
Author(s):  
K Hayakawa ◽  
R R Hardy ◽  
D R Parks ◽  
L A Herzenberg

A small subpopulation of normal murine splenic B cells carrying all of the classic B cells markers (IgM, IgD, Ia, and ThB) also carries Ly-1, one of the major T cell surface molecules. This "Ly-1 B" subpopulation (identified and characterized by multiparameter FACS analyses) consists of relatively large, high IgM/low-IgD/low-Ly-1 lymphocytes that represent approximately 2% of the spleen cells in normal animals and, generally, 5-10% of spleen cells in NZB mice. Ly-1 B are clearly detectable in all normal mouse strains tested as well as NZB, CBA/N, other X-id mice and nude (nu/nu) mice. They are found primarily in the spleen; are either absent or very poorly represented in lymph node, bone marrow, and thymus; appear early during ontogeny, and comprise about a third of the small number of lymphocytes present in 5-d-old mice. NZB and (NZB x NZW)F1 mice have more Ly-1 B than all other strains and, furthermore, have a unique Ly-1 B population that secretes IgM when cultured under usual conditions in the absence of added antigen. The IgM secretion by these Ly-1 B cells accounts for the previously reported "spontaneous" IgM secretion by NZB spleen cells in culture. Studies with FACS-sorted cells show that the presence of Ly-1 on these IgM-secreting cells distinguishes them from the (Ly-1 negative) IgM-secreting "direct" plaque-forming cells generated in NZB mice after stimulation with sheep erythrocytes.


1972 ◽  
Vol 136 (2) ◽  
pp. 305-317 ◽  
Author(s):  
Dov Theo Golan ◽  
Yves Borel

Exposure of normal mouse spleen cells in vitro to highly 125I-labeled dinitrophenyl (DNP)-protein carrier conjugates specifically inactivated cells able to mount an immune response to that hapten after in vivo challenge. The deletion was hapten specific and independent of the radioactive carrier to which the hapten was bound. DNP-binding cells were inactivated by radioactivity that was not part of the hapten, but was solely confined to the carrier moiety. The deletion of the anti-DNP response lasted 2–3 wk and could be specifically inhibited.


Nature ◽  
1968 ◽  
Vol 220 (5174) ◽  
pp. 1350-1352 ◽  
Author(s):  
H. F. JEEJEEBHOY ◽  
A. G. RABBAT

1975 ◽  
Vol 142 (6) ◽  
pp. 1488-1508 ◽  
Author(s):  
B J Skidmore ◽  
D C Morrison ◽  
J M Chiller ◽  
W O Weigle

The C3H/HeJ mouse strain, previously shown to be a nonresponder to bacterial lipopolysaccharide (LPS)-induced mitogenesis in vitro, was demonstrated by the present studies to be competent to respond mitogenically to LPS, but only to LPS preparations obtained by selected extraction methods. These preparations appear to be confined to LPS isolated by mild extraction techniques, such as TCA or butanol. In contrast, those obtained by techniques utilizing phenol were only weakly stimulatory or completely nonstimulatory for spleen cells from the C3H/HeJ. All LPS preparations tested, on the other hand, were highly stimulatory for cells from another mouse strain, namely the C3H/St. The critical importance of the method of extraction of LPS on its mitogenic activity for C3H/HeJ cells was stressed by experiments in which LPS was prepared from Escherichia coli K235 using either of two procedures. In these experiments, phenol-extracted LPS, although mitogenic in the C3H/St, was completely nonstimulatory in the C3H/HeJ; whereas, butanol-extracted LPS was highly stimulatory in both strains of mice. This striking difference was attributed to a destructive effect of phenol on LPS, as demonstrated by the fact that treatment of butanol LPS with phenol resulted in a total loss of its mitogenic activity in the C3H/HeJ, but in only a partial loss in the C3H/St. In general, the mitogenic response observed with selected LPS preparations in the C3H/HeJ was quantitatively lower and more transient than that seen with the C3H/St, although qualitatively these responses appeared to be similar. This was evidenced by the observation that in both mouse strains LPS was a specific mitogen for B cells, a property which was also attributed in both strains to the same distinct structural region of the LPS molecule, that is lipid A. A preparation of LPS that failed to stimulate B cells from the C3H/HeJ nonetheless had the capacity to block activation of these B cells by a stimulatory preparation of LPS. These results strongly suggest that mitogenic stimulation of B cells by LPS is a function of the structural integrity of both the LPS molecule and putative B-cell receptors for LPS.


1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


Development ◽  
1966 ◽  
Vol 15 (2) ◽  
pp. 133-141
Author(s):  
T. N. Chapekar ◽  
G. V. Nayak ◽  
Kamal J. Ranadive

Short-term maintenance of mouse and rat ovary in organotypic culture system is no longer a problem (Martinovitch, 1938; Gaillard, 1953; Trowell, 1959). Gaillard (1953) cultivated ovaries from 7- to 8-day-old and 21-day-old mice for a week on the plasma clot. Trowell (1959) maintained ovaries of 8-day-old mice on a synthetic medium in an O2-CO2 atmosphere for 9 days. He observed no histological differentiation in the tissues of the ovary. What needs confirmation and further investigation is the possibility of maintenance of functional activity of the ovary under culture conditions. A study was therefore undertaken to investigate if an ovary, cultivated in vitro for some time, shows hormonal activity when transplanted in vivo. In the present work cultured ovaries were grafted in the anterior eye-chamber of spayed female mice and the development of secondary sex organs such as mammary glands and uterus was studied.


2002 ◽  
Vol 9 (3) ◽  
pp. 151-159 ◽  
Author(s):  
Geert Raes ◽  
Wim Noël ◽  
Alain Beschin ◽  
Lea Brys ◽  
Patrick de Baetselier ◽  
...  

Although it is well-established that macrophages can occur in distinct activation states, the molecular characteristics of differentially activated macrophages, and particularly those of alternatively activated macrophages (aaMφ), are still poorly unraveled. Recently, we demonstrated that the expression of FIZZ1 and Ym is induced in aaMφ as compared with classically activated macrophages (caMφ), elicitedin vitroor developedin vivoduring infection withTrypanosoma brucei brucei. In the present study, we analyzed the expression of FIZZ1 and Ym in caMφ and aaMφ elicited duringTrypanosoma congolenseinfection and show that the use of FIZZ1 and Ym for the identification of aaMφ is not limited toT. b. bruceiinfection and is independent of the organ sources from which macrophages are obtained. We also demonstrate that FIZZ1 can be used to discriminate between different populations of aaMφ. Furthermore, we studied the effects of various stimuli, and combinations thereof, on the expression of FIZZ1 and Ym in macrophages from different mouse strains and demonstrate that regulation of the expression of FIZZ1 and Ym in macrophages is not dependent on the mouse strain. Finally, we show that these genes can be used to monitor the macrophage activation status without the need to obtain pure macrophage populations.


1963 ◽  
Vol 117 (1) ◽  
pp. 105-125 ◽  
Author(s):  
Manuel E. Kaplan ◽  
James H. Jandl

Studies were undertaken in man and in the rat comparing the effects of rheumatoid factors and immune antiglobulins on red cells sensitized with incomplete antibodies. The interaction of immune antiglobulins with sensitized red cells produced (a) agglutination in vitro and (b) an accelerated sequestration of the sensitized cells in vivo. In contrast, rheumatoid macroglobulins, although capable of agglutinating Rh-sensitized red cells in vitro, did not modify their destruction in vivo. The failure of rheumatoid factors to function as antiglobulins in vivo appears to reflect their non-reactivity with sensitized cells in whole serum. It is suggested: (a) that the native (7S) gamma globulins of plasma competitively inhibit rheumatoid factors from reacting with fixed antibody in the blood stream; (b) that if these macroglobulins do indeed have pathogenetic activity, this may be limited to body fluids of low protein content.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1408
Author(s):  
Qiao Li ◽  
Zhihua Liu ◽  
Yi Liu ◽  
Chen Liang ◽  
Jiayi Shu ◽  
...  

TFPR1 is a novel adjuvant for protein and peptide antigens, which has been demonstrated in BALB/c mice in our previous studies; however, its adjuvanticity in mice with different genetic backgrounds remains unknown, and its adjuvanticity needs to be improved to fit the requirements for various vaccines. In this study, we first compared the adjuvanticity of TFPR1 in two commonly used inbred mouse strains, BALB/c and C57BL/6 mice, in vitro and in vivo, and demonstrated that TFPR1 activated TLR2 to exert its immune activity in vivo. Next, to prove the feasibility of TFPR1 acting as a major component of combined adjuvants, we prepared a combined adjuvant, TF–Al, by formulating TFPR1 and alum at a certain ratio and compared its adjuvanticity with that of TFPR1 and alum alone using OVA and recombinant HBsAg as model antigens in both BALB/c and C57BL/6 mice. Results showed that TFPR1 acts as an effective vaccine adjuvant in both BALB/c mice and C57BL/6 mice, and further demonstrated the role of TLR2 in the adjuvanticity of TFPR1 in vivo. In addition, we obtained a novel combined adjuvant, TF–Al, based on TFPR1, which can augment antibody and cellular immune responses in mice with different genetic backgrounds, suggesting its promise for vaccine development in the future.


Sign in / Sign up

Export Citation Format

Share Document