scholarly journals THYMUS-DERIVED ROSETTES ARE NOT "HELPER" CELLS

1973 ◽  
Vol 138 (5) ◽  
pp. 1133-1143 ◽  
Author(s):  
B. E. Elliott ◽  
J. S. Haskill ◽  
M. A. Axelrad

Rosettes against SRBC were made from normal spleen cells. Although T rosettes tend to dissociate, they could be stabilized with 0.05% sodium azide. A clear separation of nonrosettes, T rosettes, and B rosettes was obtained by subjecting the suspension of splenic rosettes to velocity sedimentation at unit gravity. Each fraction was injected with either normal bone marrow cells or normal thymus cells with antigen into 650-R-irradiated hosts. Direct plaque-forming cells (PFC) were assayed in the spleens 7 days later. Synergism with thymus cells occurred only in the B-rosette fraction; PFC precursors therefore sedimented as B rosettes. Synergism with bone marrow cells occurred only in the nonrosette small lymphocyte fraction; helper cells therefore did not bind detectable numbers of sheep red blood cells (SRBC). Thus T rosettes are not helper cells in the direct PFC response of bone marrow B cells to SRBC.

1970 ◽  
Vol 131 (6) ◽  
pp. 1109-1120 ◽  
Author(s):  
E. B. Jacobson ◽  
Johanna L'age-Stehr ◽  
Leonard A. Herzenberg

Congenic mice, differing genetically only at the loci coding for immunoglobulin H chain (or Fc) structures, have been used to study cell interactions in the 7S (γG2a) antibody response to sheep erythrocytes (SRBC), as detected by the Jerne plaque-forming cell (PFC) method. The interaction between thymus and bone marrow cells was studied in adult thymectomized irradiated recipients, protected with syngeneic bone marrow and injected with thymus cells from the partner congenic strain. All of the γG2a PFC detected in the spleens of these mice were of bone marrow allotype. Adoptive secondary immune responses were then studied to determine whether a similar interaction between memory cells and bone marrow derived cells could be detected. Primed spleen cells from the partner congenic strain, or a subpopulation of these cells obtained by BSA density gradient fractionation, were injected into irradiated recipients alone, or together with syngeneic nonimmune spleen or bone marrow cells. All γG2a PFC detected in these experiments were of primed cell allotype. There was no evidence that antibody forming cell precursors in normal spleen or bone marrow participate in the adoptive secondary immune response detected 7 days after transfer of primed spleen cells. This was true regardless of whether the bone marrow cells were injected at the time of transfer, or were injected 1–2 wk earlier and allowed to become established in the spleens of recipient mice. Although no specific cell interaction was seen, bone marrow (and, to a lesser degree, normal spleen) cells were found to have a nonspecific enhancing effect on the adoptive secondary response when they were injected together with the primed spleen cells. This enhancement was not evident if the bone marrow cells were injected 1 or 2 wk prior to primed cell transfer.


1971 ◽  
Vol 134 (3) ◽  
pp. 801-814 ◽  
Author(s):  
M. P. McGarry ◽  
R. S. Speirs ◽  
V. K. Jenkins ◽  
J. J. Trentin

Quantitative determinations were made of the capacity of isogenic bone marrow, spleen, and thymic cells from primed and/or nonprimed mice to repopulate the hemopoietic tissues and to mount an inflammatory and antibody response to specific antigen (tetanus toxoid) in heavily irradiated and reconstituted recipients. Spleen cells from primed mice but not from normal mice had the capacity to adoptively transfer an anamnestic antitoxin titer in irradiated animals in the absence of transplanted bone marrow cells, and during retarded myeloid regeneration. Spleen cells alone or bone marrow cells alone produced an insignificant and a moderate peritoneal eosinophil response, respectively, to antigen. In the presence of bone marrow cells, normal spleen cells augment the capacity of recipient animals to mount an eosinophil response to antigen. A much greater augmentation occurs in animals reconstituted with splenic or thymic cells from primed animals. The increase in antitoxin titers appears to be independent of the response of eosinophils since: (a) marked accumulation of eosinophils can occur in animals with no measurable humoral antitoxin, and (b) high antitoxin titers can occur in animals which do not have marked eosinophil responses. It is suggested that a thymic-derived or thymic-dependent mononuclear cell population is necessary for optimal eosinophil response to antigen. The neutrophil and mononuclear cell responses to antigen are determined by different mechanisms from those which determine the eosinophil response. These studies together with earlier findings strongly indicate that the eosinophil granulocytes play a role in the immune response to antigen.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


1969 ◽  
Vol 130 (6) ◽  
pp. 1243-1261 ◽  
Author(s):  
G. M. Shearer ◽  
G. Cudkowicz

Marrow cells and thymocytes of unprimed donor mice were transplanted separately into X-irradiated syngeneic hosts, with or without sheep erythrocytes (SRBC). Antigen-dependent changes in number or function of potentially immunocompetent cells were assessed by retransplantation of thymus-derived cells with fresh bone marrow cells and SRBC; of marrow-derived cells with fresh thymocytes and SRBC; and of thymus-derived with marrow-derived cells and SRBC. Plaque-forming cells (PFC) of the direct (IgM) and indirect (IgG) classes were enumerated in spleens of secondary host mice at the time of peak responses. By using this two-step design, it was shown (a) that thymus, but not bone marrow, contained antigen-reactive cells (ARC) capable of initiating the immune response to SRBC (first step), and (b) that the same antigen complex that activated thymic ARC was required for the subsequent interaction between thymus-derived and marrow cells and/or for PFC production (second step). Thymic ARC separated from marrow cells but exposed to SRBC proliferated and generated specific inducer cells. These were the cells that interacted with marrow precursors of PFC to form the elementary units for plaque responses to SRBC, i.e. the class- and specificity-restricted antigen-sensitive units. It was estimated that each ARC generated 80–800 inducer cells in 4 days by way of a minimum of 6–10 cell divisions. On the basis of the available evidence, a simple model was outlined for cellular events in the immune response to SRBC.


1971 ◽  
Vol 134 (5) ◽  
pp. 1144-1154 ◽  
Author(s):  
David G. Tubergen ◽  
Joseph D. Feldman

Adoptive transfer experiments were performed to define the immunological role of thymus and bone marrow cells in the induction of delayed hypersensitivity (DH). The results indicated the following, (a) Bone marrow from immune donors contained cells capable of being stimulated by antigen to initiate the expression of DH. (b) Bone marrow from nonimmune or tolerant donors contained cells that were needed to complete the expression of DH after the infusion of immune lymph node cells. (c) Normal bone marrow and thymus cells cooperated in the irradiated recipient to induce the most vigorous skin reactions to specific antigen; these reactions were seen only when the recipients were stimulated by antigen. Either cell type alone was ineffective. (d) In the presence of tolerant bone marrow cells, thymus cells from immune donors gave a more vigorous response than did thymus cells from normal or tolerant donors. (e) There was suggestive evidence that thymus cells were the source of trigger elements that initiated DH. (f) Antigen in the irradiated recipient was necessary to induce DH after infusion of bone marrow cells alone, or bone marrow and thymus cells together.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640
Author(s):  
LM Pelus ◽  
PS Gentile

Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


1985 ◽  
Vol 60 (1) ◽  
pp. 33-40 ◽  
Author(s):  
A. Raghavachar ◽  
O. Prümmer ◽  
W. Calvo ◽  
W. Nothdurft ◽  
K. H. Steinbach ◽  
...  

Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640 ◽  
Author(s):  
LM Pelus ◽  
PS Gentile

Abstract Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


1992 ◽  
Vol 175 (3) ◽  
pp. 863-868 ◽  
Author(s):  
K Hiruma ◽  
H Nakamura ◽  
P A Henkart ◽  
R E Gress

Veto cell-mediated suppression of cytotoxic T lymphocyte (CTL) responses has been proposed as one mechanism by which self-tolerance is maintained in mature T cell populations. We have previously reported that murine bone marrow cells cultured in the presence of high-dose interleukin 2 (IL-2) (activated bone marrow cells [ABM]) mediate strong veto suppressor function. To examine mechanisms by which ABM may suppress precursor CTL (p-CTL) responses, we used p-CTL generated from spleen cells of transgenic mice expressing a T cell receptor specific for H-2 Ld. It was demonstrated that the cytotoxic response by these p-CTL after stimulation with irradiated H-2d/k spleen cells was suppressed by DBA/2 (H-2d) ABM, but not by B10.BR (H-2k) ABM or dm1 (Dd, Ld mutant) ABM. Flow cytometry analysis with propidium iodide staining revealed that these p-CTL were specifically deleted by incubation with H-2d ABM, but not with H-2k ABM. These data indicate that ABM veto cells kill p-CTL with specificity for antigens expressed on the surface of the ABM, and that the mechanism for veto cell activity of ABM is clonal deletion of p-CTL.


1973 ◽  
Vol 138 (1) ◽  
pp. 130-142 ◽  
Author(s):  
Varda Rotter ◽  
Amiela Globerson ◽  
Ichiro Nakamura ◽  
Nathan Trainin

The immune response to SRBC was measured in the spleens of adult thymectomized, total body irradiated mice injected with various combinations of thymus and bone marrow cells together with thymic humoral factor (THF). It was found that the number of plaque-forming cells was significantly increased when THF was given in vivo immediately after thymus cell administration or when thymus cells were incubated in THF before injection. On the other hand, bone marrow cells equally treated did not manifest any T cell activity, since THF-treated bone marrow cells were not able to substitute thymus cells in the system used. The results accumulated in the present experiments indicate, therefore, that the target cells for THF activity are thymus cells which acquire a higher T helper cell capacity after THF treatment.


Sign in / Sign up

Export Citation Format

Share Document