scholarly journals Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) II. Cellular source and effect on responder and nonresponder mice.

1977 ◽  
Vol 145 (4) ◽  
pp. 828-838 ◽  
Author(s):  
J A Kapp ◽  
C W Pierce ◽  
B Benacerraf

The synthetic terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) fails to stimulate development of GAT-specific antibody responses in nonresponder strains of mice, but does stimulate the development of GAT-specific suppressor T cells that inhibit the development of normal anti-GAT antibody responses to GAT complexed to methylated bovine serum albumin (GAT-MBSA). Furthermore, extracts prepared from lymphoid cells of GAT-primed, but not control, nonresponder mice inhibit the development of antibody responses to GAT-MBSA by normal nonresponder mice. This suppression is specific, dose-dependent, and can be readily analyzed in vitro. The suppressive factor is a T-cell product. An extract from GAT-primed DBA/1 mice inhibits the response to GAT-MBSA by spleen cells from histoincompatible strains of mice that are nonresponders to GAT, but not strains that are responders to GAT.

1977 ◽  
Vol 146 (4) ◽  
pp. 970-985 ◽  
Author(s):  
C Waltenbaugh ◽  
J Thèze ◽  
J A Kapp ◽  
B Benacerraf

Injection of mice with L-glutamic acid50-L-tyrosine50 (GT)- or L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-specific suppressor T-cell factor (GT-TsF or GAT-TsF) up to 5 wk before antigenic challenge challenge suppresses GT-methylated bovine serum albumin (MBSA) and GAT-MBSA plaque-forming cells responses. T suppressor cells are responsible for the suppression induced by the suppressive extract as demonstrated by adoptive transfer and sensitivity to anti-Thy-1 and complement treatment. We conclude that suppressive extract induces specific suppressor T cells. The material responsible for generation of suppressor T cells is a product of the I subregion of the H-2 complex. We have excluded that suppressive quantities of antigens are present in the extract. A/J mice, which can neither be suppressed by GT nor make GT-TsF can be suppressed by BALB/c GT-tsf. Spleen cells from BALB/c GT TsF-primed A/J mice can adoptively transfer suppression to normal syngeneic recipients. A/J mice appear to be genetically defective in cells involved in factor production. These results are discussed in the light of a two-step model for induction of antigen-specific suppressor cells.


1978 ◽  
Vol 148 (5) ◽  
pp. 1271-1281 ◽  
Author(s):  
C W Pierce ◽  
J A Kapp

Virgin spleen cells develop comparable primary antibody responses in vitro to syngeneic or allogeneic macrophages (Mphi) bearing the terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT), whereas immune spleen cells primed with syngeneic or allogeneic GAT-Mphi develop secondary responses preferentially when stimulated with GAT-Mphi syngeneic to the GAT-Mphi used for priming in vivo. These restrictions are mediated by products of the I-A subregion of the H-2 complex and are operative at the level of the GAT-Mphi-immune helper T-cell interactions. To investigate why these immune spleen cells fail to develop a significant antibody response to GAT-Mphi other than those used for in vivo immunization and determine the mechanism by which the restriction is maintained, spleen cells from virgin and syngeneic or allogeneic GAT-Mphi-primed mice were co-cultured in the presence of GAT-Mphi of various haplotypes. Antibody responses to GAT developed only in the presence of GAT-Mphi syngeneic to the Mphi used for in vivo priming; responses in cultures with GAT-Mphi allogeneic to the priming Mphi, whether these Mphi were syngeneic or allogeneic with respect to the responding spleen cells, were suppressed. The suppression was mediated by GAT-specific radiosensitive T cells. Thus, development of GAT-specific suppressor T cells appears to be a natural consequence of the immune response to GAT in responder as well as nonresponder mice. The implications of stimulation of genetically restricted immune helper T cells, and antigen-specific, but unrestricted, suppressor T cells after immunization with GAT-Mphi in vivo are discussed in the context of regulatory mechanisms in antibody responses.


1978 ◽  
Vol 147 (4) ◽  
pp. 997-1006 ◽  
Author(s):  
J A Kapp

The synthetic terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) fails to stimulate development of GAT-specific antibody responses in nonresponder mice but stimulates development of GAT-specific suppressor T cells that inhibit the development of normal anti-GAT plaque-forming cell responses to GAT complexed to methylated bovine serum albumin (MBSA). Extracts from lymphoid cells of GAT-primed but not control, nonresponder (DBA/1) mice contain a T-cell factor (GAT-TsF) that also specifically suppresses responses to GAT-MBSA by normal syngeneic spleen cells. The experiments reported in this communication demonstrate that: (a) extracts from all GAT-primed nonresponder mice tested contain GAT-TsF; (b) non-H-2 genes do not restrict the production of GAT-TsF; (c) all nonresponder strains of mice regardless of their non-H-2 genes are suppressed by GAT-TsF from all other strains bearing the nonresponder H-2p,q,s haplotypes; (d) suppression of GAT-MBSA responses by both syngeneic and allogeneic nonresponder spleen cells is mediated by a molecule encoded by the H-2 gene complex; and (e) both syngeneic and allogeneic nonresponder mice are suppressed by purified GAT-TsF that lacks immunoreactive GAT.


1981 ◽  
Vol 154 (1) ◽  
pp. 48-59 ◽  
Author(s):  
C M Sorensen ◽  
C W Pierce

Culture supernatant fluids from spleen cells from C57BL/10 or BALB/c mice neonatally treated with semiallogeneic (B 10.D2 x B10)F1 cells to induce haplotype-specific suppressor T cells and restimulated with macrophages syngeneic at I-A with the allogeneic haplotype encountered as neonates contain a soluble factor capable of suppressing primary in vitro antibody responses of normal syngeneic spleen cells in a non-antigen-specific manner. This haplotype-specific suppressor factor, TsF-H, has also been recovered in culture fluids of a T cell hybridoma produced by fusion of the AKR thymoma BW5147 and the haplotype-specific suppressor T cells. TsF-H is inactivated by low pH (3.5) trypsin, for 30 min at 50 degrees C, and has a molecular weight in the range of 45,000 to 68,000. Studies with specific immunoabsorbents demonstrate the presence of determinants encoded by the I-A subregion of the haplotype of the T cell producing TsF-H but not I-J subregion or immunoglobulin constant-region determinants on the TsF-H. Suppression is restricted to primary in vitro antibody responses, and not secondary antibody, mixed lymphocyte, or cytotoxic lymphocyte responses by spleen cells syngeneic at the I-A subregion of H-2 with the T cell producing the factor. The properties and activities of TsF-H and the haplotype-specific suppressor T cell are compared and contrasted with antigen-specific and genetically restricted suppressor T cells and their factors.


1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


1981 ◽  
Vol 154 (1) ◽  
pp. 35-47 ◽  
Author(s):  
CM Sorensen ◽  
CW Pierce

C57BL/10 mice were injected with semiallogeneic (B10.D2 X C57BL/10)F(1) spleen cells via the anterior facial vein within 24 h of birth to induce tolerance to B10.D2 (H-2(d)) alloantigens. Spleen cells from these mice as adults developed reduced, but significant, mixed lymphocyte and cytotoxic lymphocyte responses in vitro to H-2(d) stimulator cells and these treated mice rejected first-set B10.D2 skin grafts within a normal time-course, indicating that at best only a state of partial tolerance had been induced. Spleen cells from these mice failed to develop antibody responses to a variety of antigens in vitro when H-2(d) macrophages were in the cultures. Partially purified T cells from these neonatally treated mice suppressed primary antibody responses by normal syngeneic spleen cells in the presence of H-2(d) but not other allogeneic macrophages. These radiosensitive, haplotype-specific suppressor T (Ts) cells inhibited primary antibody responses by blocking initiation of the response, but failed to suppress secondary antibody responses and mixed lymphocyte or cytotoxic lymphocyte responses by appropriate responding spleen cells. To activate H-2(d) haplotype-specific Ts cells, stimulation with IA(d) subregion antigen(s) was necessary and sufficient; syngenicity at the I-A subregion of H-2 between the activated Ts cells and target responding spleen cell populations was also necessary and sufficient to achieve suppression. Comparable results have been obtained with spleen cells from BALB/c mice injected as neonates with (B10.D2 × C57BL/10)F(1) spleen cells where IA(b) antigens activate the haplotype-specific Ts cells. Implications for the significance of this population of haplotype-specific Ts cells in immune regulation are discussed and the properties of these Ts cells are compared and contrasted with other antigen-specific and nonspecific Ts cells whose activity is restricted by I- region products.


1982 ◽  
Vol 156 (6) ◽  
pp. 1691-1710 ◽  
Author(s):  
C M Sorensen ◽  
C W Pierce

Spleen cells from C57BL/10 mice injected with syngeneic B10 L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-pulsed macrophages (GAT-M phi) within 18 h of birth were unable to respond to soluble GAT, GAT-methylated bovine serum albumin, or B10 GAT-M phi as adults. Spleen cells from these neonatally treated mice responded at control levels to GAT presented in allogeneic M phi and to sheep erythrocytes. Partially purified T cells from these neonatally treated mice suppressed responses by syngeneic virgin, but not primed, spleen cells in an antigen-specific manner and acted during the early phases of the response. These responder GAT-specific suppressor T cells (GAT-TSR) were sensitive to anti-Thy-1 + C and 500-rad irradiation and have the phenotype Ly-1-2+, I-J+; GAT-TSR cells can only suppress responses by spleen cells syngeneic with the GAT-TSR cells at the I-J subregion of H-2. Restimulation of these Ts cells with syngeneic GAT-M phi induces an antigen-specific suppressor factor within the supernatant fluid. The factor, GAT-TsFR, is a glycoprotein with a molecular weight between 48,000 and 63,000, as determined by gel filtration chromatography using isotonic buffers; it bears serologically detectable determinants encoded by the I-J subregion of the H-2 complex, has an antigen-binding site for GAT and L-glutamic acid50-L-tyrosine50, and shares idiotypic determinants with anti-GAT antibodies. The presence of GAT-TsFR in the first 36 h of in vitro culture is required for significant suppression. Furthermore, only responses by spleen cell syngeneic with the cells producing GAT-TsFR at the I-J subregion are suppressed. The fusion of GAT-TsFR-producing cells with BW5147 resulted in generation of two hybridomas with properties and characteristics identical to those of the conventional GAT-TsFR with one exception: conventional and hybridoma 372.D6.5 GAT-TsFR only suppress responses by spleen cells of the I-Jb haplotype, whereas suppression mediated by the second hybridoma GAT-TsFR (372.B3.5) is genetically unrestricted. These hybridoma GAT-TsFR are compared with nonresponder GAT-Ts factor (GAT-TsF) and these responder and nonresponder GAT-TsF are considered in the context of suppressor pathways.


1982 ◽  
Vol 156 (3) ◽  
pp. 719-730 ◽  
Author(s):  
J Cerny ◽  
C Heusser ◽  
R Wallich ◽  
G J Hammerling ◽  
D D Eardley

The idiotopic repertoire expressed by antigen-specific suppressor T cells (Ts) generated by Streptococcus pneumoniae strain R36a (Pn) in BALB/c strain mice was investigated using a panel of five monoclonal anti-idiotopic antibodies against TEPC-15/HOPC-8 myeloma proteins. Previous studies suggested that the anti-idiotopic antibodies recognize distinct idiotopic determinants within the T15 idiotype, and that Pn-reactive B cells express all of those idiotopes as shown by a specific inhibitory effect of the anti-idiotopic antibodies on induction of anti-Pn response in vitro as well as on the mature antibody plaque-forming cells. In this study we asked the question of whether anti-idiotopic (Id) can block the inductive and/or effector phases of generation of Ts which act on the Pn-reactive B cells. The presence of anti-Id during the activation of T cells with Pn did not prevent the generation of Ts. However, suppression mediated by Ts on responder lymphocytes (cultures of spleen cells or B cels) was inhibited (reversed) by four out of five anti-Id. Some of the antibodies recognize hapten (phosphorylcholine)-inhibitable Id in the paratope of Ig whereas others are directed against nonparatopic Id. These data indicate that the antigen receptor on Ts includes VH sequences both within and without the immunoglobulin in paratope, and that the Id repertoir of Ts overlaps with that of B cells.


1992 ◽  
Vol 175 (1) ◽  
pp. 211-216 ◽  
Author(s):  
T G Yin ◽  
P Schendel ◽  
Y C Yang

The availability of large quantities of highly purified recombinant interleukin 11 (rhuIL-11) has allowed us to investigate the effects of rhuIL-11 on sheep red blood cell (SRBC)-specific antibody responses in the murine system. The results showed that rhuIL-11 was effective in enhancing the generation of mouse spleen SRBC-specific plaque-forming cells (PFC) in the in vitro cell culture system in a dose-dependent manner. These effects of rhuIL-11 were abrogated completely by the addition of anti-rhuIL-11 antibody, but not by the addition of preimmunized rabbit serum. Cell-depletion studies revealed that L3T4 (CD4)+ T cells, but not Lyt-2 (CD8)+ T cells, are required in the rhuIL-11-stimulated augmentation of SRBC-specific antibody responses. The effects of rhuIL-11 on the SRBC-specific antibody responses in vivo were also examined. RhuIL-11 administration to normal C3H/HeJ mice resulted in a dose-dependent increase in the number of spleen SRBC-specific PFC as well as serum SRBC-specific antibody titer in both the primary and secondary immune responses. In mice immunosuppressed by cyclophosphamide treatment, rhuIL-11 administration significantly augmented the number of spleen SRBC-specific PFC as well as serum SRBC-specific antibody titer when compared with the cyclophosphamide-treated mice without IL-11 treatment. These results demonstrated that IL-11 is a novel cytokine involved in modulating antigen-specific antibody responses in vitro as well as in vivo.


Sign in / Sign up

Export Citation Format

Share Document