scholarly journals Enhancement of in vitro and in vivo antigen-specific antibody responses by interleukin 11.

1992 ◽  
Vol 175 (1) ◽  
pp. 211-216 ◽  
Author(s):  
T G Yin ◽  
P Schendel ◽  
Y C Yang

The availability of large quantities of highly purified recombinant interleukin 11 (rhuIL-11) has allowed us to investigate the effects of rhuIL-11 on sheep red blood cell (SRBC)-specific antibody responses in the murine system. The results showed that rhuIL-11 was effective in enhancing the generation of mouse spleen SRBC-specific plaque-forming cells (PFC) in the in vitro cell culture system in a dose-dependent manner. These effects of rhuIL-11 were abrogated completely by the addition of anti-rhuIL-11 antibody, but not by the addition of preimmunized rabbit serum. Cell-depletion studies revealed that L3T4 (CD4)+ T cells, but not Lyt-2 (CD8)+ T cells, are required in the rhuIL-11-stimulated augmentation of SRBC-specific antibody responses. The effects of rhuIL-11 on the SRBC-specific antibody responses in vivo were also examined. RhuIL-11 administration to normal C3H/HeJ mice resulted in a dose-dependent increase in the number of spleen SRBC-specific PFC as well as serum SRBC-specific antibody titer in both the primary and secondary immune responses. In mice immunosuppressed by cyclophosphamide treatment, rhuIL-11 administration significantly augmented the number of spleen SRBC-specific PFC as well as serum SRBC-specific antibody titer when compared with the cyclophosphamide-treated mice without IL-11 treatment. These results demonstrated that IL-11 is a novel cytokine involved in modulating antigen-specific antibody responses in vitro as well as in vivo.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3932-3932
Author(s):  
Mary Faris ◽  
Uriel M Malyankar ◽  
Qingping Zeng ◽  
Gary A Flynn ◽  
Gerold Feuer ◽  
...  

Abstract Abstract 3932 ITK (Interluekin-2 Inducible Tyrosine Kinase) is a member of the TEC family of intracellular protein tyrosine kinases. ITK is highly expressed in T cells and NK cells, with expression detected in mast cells. ITK plays a key role in several aspects of T cell biology, including T cell development, differentiation, migration, proliferation and activation. The function of ITK in immunity and allergy is well documented. T cells from ITK knock out mice show several developmental and functional defects, including defective signal transduction, altered CD4+ to CD8+ T cells ratios, reduced Th2 lineage differentiation, diminished IL4 and IL2 production and reduced T cell proliferation. Importantly ITK deficient mice fail to mount an immune response to infection and show reduced allergic asthma reactions. In contrast to its well described role in immune function, ITK's function in cancer biology is still emerging. Recent studies had reported enhanced ITK expression and activation of the ITK pathway in several types of leukemias and lymphomas. In addition, the dependence of T cell malignancies on an ITK-regulated pathway, namely the IL2/IL2R (CD25) pathway, has also been observed. Taken together, this information indicates that ITK is a therapeutic target, with applicability in leukemias and lymphomas. MannKind scientists have developed a series of selective small molecule ITK inhibitors, including the orally available tool compound described within, and evaluated their activity in enzyme, cell-based and in vivo studies. In cellular assays, the compounds showed significant inhibition of the T cell-receptor mediated activation of the ITK pathways and related downstream cytokine production. In addition to inhibiting the phosphorylation of ITK and its downstream mediator, PLCg, our tool compounds inhibited the production of IL2 and expression of CD25 in a dose dependent manner. Importantly, our compound regulated the in vitro growth of tumor T cells but not that of unrelated control cells. In vivo studies revealed that the tool compounds inhibited the growth and progression of patient derived ATL tumors in a xenograft pre-clinical model, and prolonged the survival of treated mice in a dose dependent manner, in addition to regulating cytokine production in vivo. In summary, our team has identified ITK selective compounds with demonstrated on-target and anti-tumor activity in vitro and preclinical T cell tumor models, and validated this pathway relative to T cell malignancies. This effort provides a platform for further compound optimization and evaluation for hematologic malignancies. Disclosures: Faris: MannKind Corp: Employment. Malyankar:MannKind Corp: Employment. Zeng:MannKind Corp: Employment. Kertesz:Mannkind Corporation: Employment, Equity Ownership. Vuga:MannKind Corp.: Employment. Rosario:MannKind Corp: Employment. Bot:MannKind Corp: Employment.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 681 ◽  
Author(s):  
Renuka V. Iyer ◽  
Orla Maguire ◽  
Minhyung Kim ◽  
Leslie I. Curtin ◽  
Sandra Sexton ◽  
...  

The multikinase inhibitor sorafenib is the only standard first-line therapy for hepatocellular carcinoma (HCC). Here, we report the dose-dependent effects of sorafenib on the immune response, which is related to nuclear factor of activated T cells 1 (NFAT1) activity. In vitro and in vivo experiments were performed with low and high doses of sorafenib using human T cells and spontaneous developed woodchuck HCC models. In vitro studies demonstrated that following exposure to a high dose of sorafenib the baseline activity of NFAT1 in T cells was significantly increased. In a parallel event, high dose sorafenib resulted in a significant decrease in T cell proliferation and increased the proportion of PD-1 expressing CD8+ T cells with NFAT1 activation. In the in vivo model, smaller tumors were detected in the low-dose sorafenib treated group compared to the placebo and high-dose treated groups. The low-dose sorafenib group showed a significant tumor growth delay with significantly more CD3+ cells in tumor. This study demonstrates that sorafenib has immunomodulatory effects in a dose- and time-dependent manner. Higher dose of sorafenib treatment was associated with immunosuppressive action. This observed effect of sorafenib should be taken into consideration in the selection of optimum starting dose for future trials.


1975 ◽  
Vol 142 (1) ◽  
pp. 50-60 ◽  
Author(s):  
J A Kapp ◽  
C W Pierce ◽  
B Benacerraf

Mice which are genetic nonresponders to the random terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) not only fail to develop GAT-specific antibody responses when stimulated with soluble GAT either in vivo or in vitro, but develop GAT-specific T cells which suppress the GAT-specific plaque-forming cell response of normal nonresponder mice stimulated with GAT complexed to methylated bovine serum albumin (MBSA).Thus, both responder and nonresponder mice have T cells which recognize GAT. However, nonresponder mice can develop GAT-specific helper T cells if immunized with GAT bound to MBSA or to macrophages. The relevance of Ir gene-controlled responses is discussed.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ting-Yeu Dai ◽  
Chih-Hua Wang ◽  
Kun-Nan Chen ◽  
I-Nung Huang ◽  
Wei-Sheng Hong ◽  
...  

We assayed the effects of velvet antler (VA) of Formosan sambar deer (Cervus unicolor swinhoei) and its extracts on the anti-infective activity against pathogenicStaphylococcus aureus in vitroandin vivoin this study.In vitrodata indicated that the VA extracts stimulated the proliferation of resting splenocytes and macrophages in a dose-dependent manner up to the highest concentration used (150 μg mL−1). The production of proinflammatory cytokines (TNF-α, IL-6, IL-12) by lipoteichoic acid was significantly suppressed after being cocultured with the VA extracts in a dose-dependent manner. Animal test inS. aureus-infected mice demonstrated that the numbers of bacteria determined in the kidneys and peritoneal lavage fluid ofS. aureus-infected mice were significantly higher than those found in the same organs of mice pretreated with the VA samples. Moreover, the highly enhanced phagocytic activity of macrophages was further verified afterin vitrotreatment with the VA samples. The protective mechanisms of the VA samples might include an immune enhancer and an inflammatory cytokine suppressor.


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Liu ◽  
Ping Chen ◽  
Xiaojun Du ◽  
Junxia Sun ◽  
Shasha Han

Abstract Background Obtusofolin is the major active ingredient of Catsia tora L., which possesses the activity of improving eyesight and protecting the optic nerve. Investigation on the interaction of obtusofolin with cytochrome P450 enzymes (CYP450s) could provide a reference for the clinical application of obtusofolin. Methods The effect of obtusofolin on the activity of CYP450s was investigated in the presence of 100 μM obtusofolin in pooled human liver microsomes (HLMs) and fitted with the Lineweaver–Burk plots to characterize the specific inhibition model and kinetic parameters. Results Obtusofolin was found to significantly inhibited the activity of CYP3A4, 2C9, and 2E1. In the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM obtusofolin, the inhibition of these CYP450s showed a dose-dependent manner with the IC50 values of 17.1 ± 0.25, 10.8 ± 0.13, and 15.5 ± 0.16 μM, respectively. The inhibition of CYP3A4 was best fitted with the non-competitive inhibition model with the Ki value of 8.82 μM. While the inhibition of CYP2C9 and 2E1 was competitive with the Ki values of 5.54 and 7.79 μM, respectively. After incubating for 0, 5, 10, 15, and 30 min, the inhibition of CYP3A4 was revealed to be time-dependent with the KI value of 4.87 μM− 1 and the Kinact value of 0.0515 min− 1. Conclusions The in vitro inhibitory effect of obtusofolin implying the potential drug-drug interaction between obtusofolin and corresponding substrates, which needs further in vivo validations.


Sign in / Sign up

Export Citation Format

Share Document