scholarly journals Genetic control of cytolytic t-lymphocyte responses. II. The role of the host genotype in parental leads to F1 radiation chimeras in the control of the specificity of cytolytic T-lymphocyte responses to trinitrophenyl-modified syngeneic cells.

1978 ◽  
Vol 148 (2) ◽  
pp. 352-359 ◽  
Author(s):  
P Billings ◽  
S J Burakoff ◽  
M E Dorf ◽  
B Benacerraf

Bone marrow cells from C3H (H-2k) mice, a strain that does not exhibit cross-reactive lysis of trinitrophenyl (TNP)-modified allogeneic targets, were allowed to mature in heavily irradiated (B6 times C3H)F1 (H-2b/k) recipients, an F1 hybrid that does demonstrate cross-reactive lysis. Spleen cells from these chimeric mice were removed after 3-4 mo and by H-2 typing shown to be of C3H origin. These cells were found to be tolerant to B6 alloantigens by mixed lymphocyte reaction and cell-mediated cytotoxicity and, when stimulated in vitro with TNP-modified syngeneic cells, now cross-reactively lysed TNP-modified allogeneic targets. These studies demonstrate that the host environment where T cells differentiate influences the specificity of the primary cytolytic T-lymphocyte (CTL) response to TNP-modified syngeneic antigens.

1978 ◽  
Vol 148 (2) ◽  
pp. 341-350 ◽  
Author(s):  
P Billings ◽  
S J Burakoff ◽  
M E Dorf ◽  
B Benacerraf

The ability of cytotoxic T lymphocytes (CTL) induced in vitro to trinitrophenyl (TNP)-modified syngeneic cells to cross-reactively lyse a TNP allogeneic spleen target varies among inbred mouse strains. The cross-reactive CTL phenotype was found to be histocompatibility 2 (H-2) linked and to be dominant in F1 hybrid mice. All strains investigated demonstrated cross-reactivity except for some strains bearing portions of the H-2k haplotype. The gene(s) controlling this response maps to the K and/or I-A region of the H-2 complex. We have termed the immune response (Ir) gene responsible for controlling the specificity of CTL induced to TNP-modified syngeneic cells Ir-X-TNP.


1988 ◽  
Vol 111 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Henry L. Wong ◽  
Darien E. Wilson ◽  
James C. Jenson ◽  
Philip C. Familletti ◽  
Donna L. Stremlo ◽  
...  

1999 ◽  
Vol 73 (5) ◽  
pp. 3826-3834 ◽  
Author(s):  
Robert F. Rich ◽  
William R. Green

ABSTRACT C57BL/6 (H-2b ) mice generate type-specific cytolytic T-lymphocyte (CTL) responses to an immunodominant Kb-restricted epitope, KSPWFTTL located in the membrane-spanning domain of p15TM of AKR/Gross murine leukemia viruses (MuLV). AKR.H-2b congenic mice, although carrying the responder H-2b major histocompatibility complex (MHC) haplotype, are low responders or nonresponders for AKR/Gross MuLV-specific CTL, apparently due to the presence of inhibitory AKR.H-2b cells. Despite their expression of viral antigens and Kb, untreated viable AKR.H-2b spleen cells cause dramatic inhibition of the C57BL/6 (B6) antiviral CTL response to in vitro stimulation with AKR/Gross MuLV-induced tumor cells. This inhibition is specific (AKR.H-2b modulator spleen cells do not inhibit allogeneic MHC or minor histocompatibility antigen-specific CTL production), dependent on direct contact of AKR.H-2bcells in a dose-dependent manner with the responder cell population, and not due to soluble factors. Here, the mechanism of inhibition of the antiviral CTL response is shown to depend on Fas/Fas-ligand interactions, implying an apoptotic effect on B6 responder cells. Although B6.gld (FasL−) responders were as sensitive to inhibition by AKR.H-2b modulator cells as were B6 responders, B6.lpr (Fas−) responders were largely insensitive to inhibition, indicating that the responder cells needed to express Fas. A Fas-Ig fusion protein, when added to the in vitro CTL stimulation cultures, relieved the inhibition caused by the AKR.H-2b cells if the primed responders were from either B6 or B6.gld mice, indicating that the inhibitory AKR.H-2bcells express FasL. Because of the antigen specificity of the inhibition, these results collectively implicate a FasL/Fas interaction mechanism: viral antigen-positive AKR.H-2b cells expressing FasL inhibit antiviral T cells (“veto” them) when the AKR.H-2b cells are recognized. Consistent with this model, inhibition by AKR.H-2b modulator cells was MHC restricted, and resulted in approximately a 10- to 70-fold decrease in the in vitro expansion of pCTL/CTL. Both CD8+ CTL and CD4+Th responder cells were susceptible to inhibition by FasL+AKR.H-2b inhibitory cells as the basis for inhibition. The CTL response in the presence of inhibitory cells could be restored by several cytokines or agents that have been shown by others to interfere with activation-induced cell death (e.g., interleukin-2 [IL-2], IL-15, transforming growth factor β, lipopolysaccharide, 9-cis-retinoic acid) but not others (e.g., tumor necrosis factor alpha). These results raise the possibility that this type of inhibitory mechanism is generalized as a common strategy for retrovirus infected cells to evade immune T-cell recognition.


1980 ◽  
Vol 151 (1) ◽  
pp. 20-31 ◽  
Author(s):  
G M Shearer ◽  
R P Polisson

Four different combinations of F1 hybrid mice [(C57BL/10 X B10.A)F1, (C57BL/10 X B10.BR)F1, B6D2F1, and AKD2F1] were injected intravenously with spleen cells from parental strains. The T-cell-mediated cytotoxic potential of spleen cells from the injected F1 mice was assessed from 4 to 21 d later by in vitro sensitization with trinitrophenyl-modified parental or syngeneic F1 spleen cells (TNP-self) or with allogeneic spleen cells. The cytotoxic potential of the F1 mice to TNP-self as well as to alloantigens was abolished or severely depressed throughout this period when the respective H-2k,a,d parental spleen cells were injected. In contrast, the cytotoxic potential was unaffected or only marginally reduced when H-2b parental cells were injected. The induction of depressed cytotoxic activity was shown to be a result of a population of parental radiosensitive T lymphocytes. The results should be discussed with respect to (a) the genetic and mechanistic parameters associated with the differential depressive effects of parental cells expressing H-2b vs. H-2k,a,d antigens, and (b) the use of this system for investigating allogeneic receptors on T-lymphocyte populations.


1983 ◽  
Vol 157 (3) ◽  
pp. 936-946 ◽  
Author(s):  
G M Shearer ◽  
R B Levy

Several combinations of F1 hybrid mice were injected intravenously with parental spleen cells to determine the minimal H-2 differences between F1 and parent that are necessary to induce graft-vs.-host-associated immune suppression (GVH-associated suppression). 7-14 d after injection, the spleens of the F1 mice were tested for cytotoxic T lymphocyte potential by in vitro sensitization against trinitrophenyl-self and H-2 alloantigens. The results indicate that parental T lymphocytes must recognize I-A allogeneic determinants of the F1 recipient in order to induce suppression. Recognition of K or D alone or D with I region products other than I-A did not induce suppression. The recognition of I region without K and/or D and even the I-A difference between C57BL/6 and the B6.Cbm12 mutation resulted in immune suppression that was as potent as that resulting from the recognition of K, D, and I together. The possible significance of this function for I-A antigens is discussed with respect to three clinical examples of immune suppression for which this phenomenon may be relevant.


1972 ◽  
Vol 136 (4) ◽  
pp. 962-967 ◽  
Author(s):  
P.-F. Piguet ◽  
P. Vassalli

Spleen cell cultures of radiation chimeras (thymectomized, lethally irradiated mice repopulated with bone marrow cells and thymocytes bearing different chromosomal markers) were stimulated by phytohemagglutinin (PHA) and F1 allogeneic spleen cells. Karyotypic analyses showed a marked predominance of T mitoses on the 2nd and 3rd days of culture followed by a strong predominance of B mitoses on the 4th and 5th days. Analysis of cells undergoing their first mitoses showed that the majority of T mitoses on day 3 resulted from continuous T cell division, and that most cells entering their first mitoses at that time were of B type. Mixed lymphocyte cultures (MLC) of chimeras immunized against allogeneic spleen cells showed sometimes, but not always, a response different from "primary" MLC, with an earlier and stronger predominance of BM mitoses. The role of stimulated T cells in the induction of B mitoses was shown by (a) the incapacity of T-depleted spleen cells to be stimulated by PHA or in primary or secondary MLC, and (b) the restoration of the mitotic response of B cells to PHA by adding to the T cell-depleted culture either a very small number of T cell (identified by their different karyotype: "in vitro chimeras") or the cell-free supernatant of a 24 hr MLC.


Sign in / Sign up

Export Citation Format

Share Document