scholarly journals THYMUS-INDEPENDENT (B) CELL PROLIFERATION IN SPLEEN CELL CULTURES OF MOUSE RADIATION CHIMERAS STIMULATED BY PHYTOHEMAGGLUTININ OR ALLOGENEIC CELLS

1972 ◽  
Vol 136 (4) ◽  
pp. 962-967 ◽  
Author(s):  
P.-F. Piguet ◽  
P. Vassalli

Spleen cell cultures of radiation chimeras (thymectomized, lethally irradiated mice repopulated with bone marrow cells and thymocytes bearing different chromosomal markers) were stimulated by phytohemagglutinin (PHA) and F1 allogeneic spleen cells. Karyotypic analyses showed a marked predominance of T mitoses on the 2nd and 3rd days of culture followed by a strong predominance of B mitoses on the 4th and 5th days. Analysis of cells undergoing their first mitoses showed that the majority of T mitoses on day 3 resulted from continuous T cell division, and that most cells entering their first mitoses at that time were of B type. Mixed lymphocyte cultures (MLC) of chimeras immunized against allogeneic spleen cells showed sometimes, but not always, a response different from "primary" MLC, with an earlier and stronger predominance of BM mitoses. The role of stimulated T cells in the induction of B mitoses was shown by (a) the incapacity of T-depleted spleen cells to be stimulated by PHA or in primary or secondary MLC, and (b) the restoration of the mitotic response of B cells to PHA by adding to the T cell-depleted culture either a very small number of T cell (identified by their different karyotype: "in vitro chimeras") or the cell-free supernatant of a 24 hr MLC.

1978 ◽  
Vol 147 (2) ◽  
pp. 352-368 ◽  
Author(s):  
A Schmitt-Verhulst ◽  
CB Pettinelli ◽  
PA Henkart ◽  
JK Lunney ◽  
GM Shearer

Murine spleen cells from normal donors were cultured in vitro with trinitrobenzene sulfonate (TNBS)-conjugated soluble proteins, i.e., bovine gamma globulin (TNP-BGG) or bovine serum albumin (TNP-BSA). Addition of 100 μg of any of these TNP-proteins to the spleen cell cultures led to the generation of cytotoxic T-cell effectors which were H-2-restricted and TNP- specific. The lytic potential of such effectors was comparable to that generated by sensitization with TNBS-modified syngeneic cells, and was restricted to haplotypes shared at the K or K plus I-A, or the D regions of the H-2 complex. Greater effecter cell activity was generated by addition of TNP-BGG against TNBS-modified targets which shared K plus I-A than against modified targets which shared the D region with the responding cells, which suggests that the same immune response genes are involved when the response is generated by the addition of TNP-conjugated soluble proteins or of TNBS- modified cells. H-2-restricted, TNP-specific effecter cells were generated by culturing mouse spleen cells with syngeneic cells which had been preincubated with TNP- BGG or TNP-BSA for 1.5 h. The addition of unconjugated soluble proteins to the cultures did not result in cytotoxic effectors detectable on H-2-matched targets, whether the targets were prepared by modification with TNBS, or by incubation with either the unconjugated or TNP-conjugated proteins. Depletion of phagocytic cells in the tumor preparation by Sephadex G-10 column fractionation before incubation with TNP-BSA had no effect on their lysis by the relevant effector cells. Immunofluorescent staining of tumor target cells with anti-TNP antibodies indicated that TNP could be detected on the tumor cells within 10 rain of incubation with TNP-BSA. The cytotoxic response generated by addition of the TNP-proteins to spleen cell cultures was found to be T-cell dependent at the effector phase, as shown by the sensitivity of the lytic phase to absorbed RAMB and complement. Furthermore, the response did not appear to be attributable to antibody-dependent cellular cytotoxicity. Three mechanisms were considered which could account for the generation of H-2-restricted, TNP-specific, cytotoxic T-cell effectors by the addition of soluble TNP-proteins. These include covalent linkage of activated TNP groups from the soluble proteins to cell surface components, macrophage processing of the soluble conjugates and presentation to the responding lymphocytes in association with H-2-coded self structures, or hydrophobic interaction of the TNP-proteins to cell surfaces. Results obtained from sodium dodecyl sulfate gel patterns indicating that cell-bound TNP was still linked to BSA, and the observation that phagocytic-depleted cells could interact with the soluble TNP-proteins and function as H-2-restricted targets, appear not to favor the first two proposed mechanisms.


1990 ◽  
Vol 69 (5) ◽  
pp. 1912-1915 ◽  
Author(s):  
A. Ferry ◽  
B. L. Weill ◽  
M. Rieu

Various regimens of treadmill exercise (0% slope) were used with rats: 60 min at 15 m/min (T-15), 180 min at 10 m/min (T-10), and 60 min/day at 15 m/min for 6 consecutive days (T-15-6). Exercise resulted in 1) decreases in the absolute number of mononuclear spleen cells in T-10 rats, 2) significant increases in in vitro splenic T-cell blastogenesis in response to phytohemagglutinin in T-10 rats, and 3) significant decreases in T-cell blastogenesis in T-15-6 rats. T-15-6 rats were given aminoglutethimide per os before exercise sessions to study the role of corticosteroids in the alteration of splenic T-cell blastogenesis. Aminoglutethimide significantly increased the T-cell blastogenesis in these T-15-6 rats compared with those not given aminoglutethimide, whereas it had no effect on immune parameters of sedentary rats. These results show that immunomodulations in the rat depend on the treadmill exercise regimen employed. If the mechanisms of the immunomodulation induced by isolated exercise of long duration are not elucidated, these data suggest that corticosteroids are involved in the alteration in T-cell blastogenesis induced by chronic muscular exercise.


1974 ◽  
Vol 139 (4) ◽  
pp. 1025-1030 ◽  
Author(s):  
Michael J. Bevan ◽  
Ruth Epstein ◽  
Melvin Cohn

Mouse spleen cells which have been depleted of adherent cells do not respond to allogeneic lymphocytes in vitro. Their cytotoxic response can be restored by inclusion of mercaptoethanol in the medium. Mercaptoethanol is shown to have a stimulatory effect also on the response of normal (unseparated) spleen cells to alloantigens. The enhancement of the DNA-synthetic and cytotoxic response is similar, varying from 3.5–15-fold. Cytotoxic cells also appear in unmixed lymphocyte cultures in the presence of mercaptoethanol and fetal calf serum. The specificity of these background cytotoxic cells is not known.


1985 ◽  
Vol 161 (5) ◽  
pp. 953-971 ◽  
Author(s):  
M Brunswick ◽  
P Lake

The role of gamma interferon (IFN-gamma) in T cell-replacing factor (TRF) activity for antigen-specific plaque-forming cell (PFC) responses in vitro was studied using antibodies to murine IFN-gamma (Mu IFN-gamma). TRF activity was present in supernatants (Sn) of Con A- or mixed leukocyte reaction-stimulated murine spleen cells as well as in an IL-2-rich fraction of phytohemagglutinin-stimulated human peripheral blood lymphocyte Sn and in the Sn of the Gibbon T lymphoma MLA-144. The human TRF was highly active with cells from nu/nu mice and normal mice but not with cells from animals with the xid immunologic defect, similar to the activity of murine TRF. Antibodies to IFN-gamma consisted of hyper-immune rabbit antisera, IFN-gamma affinity-purified rabbit immunoglobulin and an interspecies hybridoma specific for Mu IFN-gamma. The results show that the activities of all preparations of TRF are markedly diminished or abrogated by antibody to Mu IFN-gamma but not by antibodies to human IFN-gamma (Hu IFN-gamma), nor by normal rabbit sera or purified rabbit Ig. The degree of inhibition was dose dependent and was quantitatively reversed by the addition to the cultures of recombinant-derived Mu IFN-gamma (Mu rIFN-gamma) but not Hu rIFN-gamma. This reversal was fully antigen specific and thus not attributable to polyclonal B cell activation by IFN-gamma, which is inactive alone in the TRF assay. Kinetic analysis shows that IFN-gamma must act by 24-48 h to produce PFC responses at 4 d. Together, the data demonstrate that IFN-gamma is a necessary mediator for TRF effects and that IFN-gamma is induced by TRF from T-depleted murine spleen cells in sufficient quantity to support large antibody responses. The source of this IFN-gamma may be the potent natural killer cells that are induced in cultures stimulated with TRF.


1978 ◽  
Vol 148 (2) ◽  
pp. 352-359 ◽  
Author(s):  
P Billings ◽  
S J Burakoff ◽  
M E Dorf ◽  
B Benacerraf

Bone marrow cells from C3H (H-2k) mice, a strain that does not exhibit cross-reactive lysis of trinitrophenyl (TNP)-modified allogeneic targets, were allowed to mature in heavily irradiated (B6 times C3H)F1 (H-2b/k) recipients, an F1 hybrid that does demonstrate cross-reactive lysis. Spleen cells from these chimeric mice were removed after 3-4 mo and by H-2 typing shown to be of C3H origin. These cells were found to be tolerant to B6 alloantigens by mixed lymphocyte reaction and cell-mediated cytotoxicity and, when stimulated in vitro with TNP-modified syngeneic cells, now cross-reactively lysed TNP-modified allogeneic targets. These studies demonstrate that the host environment where T cells differentiate influences the specificity of the primary cytolytic T-lymphocyte (CTL) response to TNP-modified syngeneic antigens.


Endocrinology ◽  
2000 ◽  
Vol 141 (6) ◽  
pp. 2054-2061 ◽  
Author(s):  
Xiaodong Li ◽  
Yosuke Okada ◽  
Carol C. Pilbeam ◽  
Joseph A. Lorenzo ◽  
Christopher R. J. Kennedy ◽  
...  

Abstract Prostaglandin E2 (PGE2) stimulates the formation of osteoclast-like tartrate-resistant acid phosphatase-positive multinucleated cells (TRAP + MNC) in vitro. This effect likely results from stimulation of adenylyl cyclase, which is mediated by two PGE2 receptors, designated EP2 and EP4. We used cells from mice in which the EP2 receptor had been disrupted to test its role in the formation of TRAP + MNC. EP2 heterozygous (±) mice in a C57BL/6 x 129/SvEv background were bred to produce homozygous null (EP2 −/−) and wild-type (EP2 +/+) mice. PGE2, PTH, or 1,25 dihydroxyvitamin D increased TRAP+ MNC in 7-day cultures of bone marrow cells from EP2 +/+ mice. In cultures from EP2 −/− animals, responses to PGE2, PTH, and 1,25 dihydroxyvitamin D were reduced by 86%, 58%, and 50%, respectively. A selective EP4 receptor antagonist (EP4RA) further inhibited TRAP+ MNC formation in both EP2 +/+ and EP2 −/− cultures. In cocultures of spleen and calvarial osteoblastic cells, the response to PGE2 or PTH was reduced by 92% or 85% when both osteoblastic cells and spleen cells were from EP2− /− mice, by 88% or 68% when only osteoblastic cells were from EP2 −/− mice and by 58% or 35% when only spleen cells were from EP2 −/− mice. PGE2 increased receptor activator of nuclear factor (NF)-kB ligand (RANKL) messenger RNA expression in osteoblastic and bone marrow cell cultures from EP2 +/+ mice 2-fold but had little effect on cells from EP2 −/− mice. Spleen cells cultured with RANKL and macrophage colony stimulating factor produced TRAP+ MNC. PGE2 increased the number of TRAP+ MNC in spleen cell cultures from EP2 +/+ mice but not in cultures from EP2 −/− mice. EP4RA had no effect on the PGE2 response in spleen cell cultures. PGE2 decreased the expression of messenger RNA for granulocyte-macrophage colony stimulating factor in spleen cell cultures from EP2+ /+ mice but had little effect on cells from EP2 −/− mice. These data demonstrate that the prostaglandin EP2 receptor plays a role in the formation of osteoclast-like cells in vitro. A major defect in EP2 −/− mice appears to be in the capacity of osteoblastic cells to stimulate osteoclast formation. In addition, there appears to be a defect in the response of cells of the osteoclastic lineage to PGE2 in EP2 −/− mice.


1984 ◽  
Vol 159 (4) ◽  
pp. 1238-1252 ◽  
Author(s):  
K L Rock ◽  
B Benacerraf

A large panel of alloreactive, interleukin 2 (IL-2)-producing T cell hybridomas was constructed from B10 alpha BALB/c primary mixed lymphocyte cultures (MLC). Functional hybrids had specificity for either I-Ad or I-Ed. These cells were used to probe determinants on Ia molecules in an attempt to detect molecular association between a nominal antigen and an Ia molecule on an antigen-presenting cell (APC). The response of a small number of these clones was significantly blocked by the addition of the Ir gene-controlled copolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) to culture. A comparison of the inhibited and uninhibited hybrids revealed an identical dose response curve. Further, both types of hybrids were activated by the same stimulator cell and frequently recognized the identical Ia molecule on that cell. Nevertheless, the inhibitory effect of GAT was localized to the stimulator cell and not to the T cell hybrids. All of the hybrids whose stimulation was blocked had specificity for the I-A molecule, which is the gene product known to control and restrict responsiveness to GAT. Further, only GT, but not a number of other related antigens, was also specifically inhibitory, which correlates with the known associational specificity of these antigens on an APC. Finally, the same stimulator cell could be shown to coordinately lose an allostimulatory determinant(s), while it was gaining an I-Ad plus GAT determinant(s). The implications of these findings on the nature of antigen-Ia association and on the role of polymorphic Ia determinants are discussed.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 821-821
Author(s):  
Amy Beres ◽  
Dipica Haribhai ◽  
Chelsea Tessler-Verville ◽  
Patrick Gonyo ◽  
Martin Hessner ◽  
...  

Abstract Abstract 821 Regulatory T cells defined as CD4+ and expressing the transcription factor Foxp3 have been shown to play a pivotal role in mitigating the severity of graft versus host disease (GVHD). In the course of studies designed to define the functional role of various CD4+ Treg populations in GVHD biology, we identified a novel population of CD8+ T cells that expressed Foxp3 and were induced early during this disease. While this population has been reported in patients with autoimmune disorders, the role of CD8+ Foxp3+ T cells in GVHD is unknown. To delineate the significance of this observation, we performed studies in which lethally irradiated Balb/c [H-2d] mice were transplanted with bone marrow and spleen cells from C57BL/6J [H-2b] mice that carried an EGFP reporter gene linked to Foxp3 (Foxp3EGFP). Tissues (spleen, lung, liver and colon) were harvested 5, 7, 10, 14 and 21 days post transplantation to define the temporal kinetics and absolute numbers of CD8+ Tregs during acute GVHD. We observed that CD8+ Foxp3+ T cells were detectable as early as five days post transplantation and persisted for up to three weeks in all GVHD target tissues. This cell population was present in similar percentages and absolute numbers to CD4+ Tregs in these tissue sites which is noteworthy given that the CD4+ Treg pool is comprised of two populations (natural Tregs and induced Tregs) whereas the CD8 pool is made up almost exclusively of Tregs that are induced, since only a very small percentage of CD8+ T cells from normal mice (<1.0%) constitutively express Foxp3. To determine whether the induction of CD8+ Tregs was a function of MHC disparity, we performed similar transplant studies using murine models with varying degrees of MHC incompatibility. Notably, the relative and absolute number of CD8+ Tregs were much lower in an MHC-matched, minor antigen mismatched model of GVHD [B6→Balb.B], and were absent in a model where only three amino acids distinguish donor and recipient [B6→bm1], indicating a correlation between CD8+ iTreg generation and MHC disparity between donor and host. To confirm that in vivo-induced CD8+ Tregs were suppressive, CD8+ Foxp3+ and CD4+ Foxp3+ T cells were sorted from the spleen and liver of B6→Balb/c GVHD mice six days post transplantation and examined in standard MLC suppression assays. These studies revealed that in vivo-derived CD8+ and CD4+ Tregs equally suppressed alloreactive T cell responses. Phenotypic analysis of in vivo-differentiated CD8 iTregs revealed that these cells expressed many of the same cell surface molecules as CD4+ Tregs (e.g. GITR, CD25, CD103, CTLA-4). To determine if CD8+ Foxp3+ T cells could be induced in vitro and used as adoptive therapy for GVHD prevention, purified CD8+ Foxp3EGFP– T cells were cultured with anti-CD3/CD28 antibodies, TGF-β and IL-2 for 3 days. Under these conditions, ∼30% of cells are induced to become Foxp3+. Addition of in vitro-differentiated CD8+ iTregs to a standard MLC resulted in potent suppression which was equivalent to that observed with in vitro-differentiated CD4+ Tregs. To determine whether these cells were suppressive in vivo, in vitro-differentiated CD8+ iTregs were adoptively transferred at a 1:1 Treg: effector cell ratio into lethally irradiated Balb/c mice that also received B6.PL BM and spleen cells to induce GVHD. In vitro-derived CD8+ iTregs failed to protect mice from GVHD in comparison to animals transplanted without CD8+ iTregs. This was attributable to reduced survival and the loss of Foxp3 expression in vivo. Furthermore, approximately 30–50% of these cells reverted to a proinflammatory phenotype characterized by IFN-γ secretion, similar to what has been described for in vitro-differentiated CD4+ iTregs (Beres et al, Clin Can Res, 2011). Finally, microarray studies were performed to compare the gene signatures of in vitro versus in vivo-induced CD8+ Tregs. Ontological analysis revealed that there was a 3–16 fold increase in the transcription of cytokine (e.g. IL-10) and cytotoxic (granzyme A, perforin, granzyme B) pathway genes in in vivo versus in vitro-induced CD8+ Tregs, suggesting that the former Treg population may employ similar mechanisms of suppression as has been reported for CD4+ Tregs. In summary, these studies have identified a novel population of CD8+ Foxp3+ cells that are induced early during GVHD, are able to suppress alloreactive T cell responses, and constitute another regulatory T cell population that is operative in GVHD biology. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document