scholarly journals Mechanisms of regulation of cell-mediated immunity. III. The characterization of azobenzenearsonate-specific suppressor T-cell-derived-suppressor factors.

1979 ◽  
Vol 149 (5) ◽  
pp. 1069-1083 ◽  
Author(s):  
M I Greene ◽  
B A Bach ◽  
B Benacerraf

Delayed type hypersensitivity to the hapten azobenzenearsonate (ABA) can be induced and suppressed by the administration of hapten-coupled syngeneic spleen cells by the appropriate route. Suppressor T cells stimulated by the intravenous administration of ABA-coupled spleen cells have been shown to produce a discrete subcellular factor(s) which is capable of suppressing delayed type hypersensitivity to azobenzenearsonate in the mouse. Such suppressor factors may be produced by the mechanical disruption of suppressor cells or by placing such suppressor cells in culture for 24 h. The suppressor factor(s) (SF) derived from ABA-specific suppressor cells exhibit biological specificity for the suppression of ABA delayed type hypersensitivity (DTH), but not trinitro-phenyl DTH, as well as the capacity to bind to ABA immunoadsorbents. Passage of suppressor factor(s) over reverse immunoadsorbents utilizing a rabbit anti-mouse F(ab')2 antiserum demonstrated that the antigen-specific T-cell derived SF does not bear conventional immunoglobulin markers. The suppressor factor(s) are not immunoglobulin molecules was further demonstrated by the inability of anti-ABA antibodies to suppress ABA DTH. Gel filtration of ABA suppressor factor(s) showed that the majority of the suppressive activity was present in a fraction with molecular weight ranging between 6.8 x 10(4) and 3.3 x 10(4) daltons. We also analyzed for the presence of determinants encoded by the H-2 major histocompatibility complex (MHC) and found that immunoadsorbents prepared utilizing antisera capable of interacting with gene products of the whole or selected gene regions of H-2 MHC, i.e., B10.D2 anti-B10.A and B10 anti-B10.A immunoadsorbents, retained the suppressive activity of ABA-SF. Elution of such columns with glycine HCl buffers (pH 2.8) permitted recovery of specific suppressive activity. Taken collectively such data supports the notion that suppressor T-cell-derived ABA suppressor factors have antigen-binding specificity as well as determinants controlled by the K end of the H-2 MHC. The distribution of strains capable of making SF has also been analyzed. The relationship of the antigen-binding specificity to VH gene products is discussed in this and the companion paper.

1981 ◽  
Vol 153 (6) ◽  
pp. 1672-1677 ◽  
Author(s):  
M Taniguchi ◽  
T Saito ◽  
I Takei ◽  
T Tokuhisa

The secreted form of the suppressor T cell factor specific for keyhole limpet hemocyanin derived from the hybridoma 34S-704 was found to consist of the two distinct polypeptide chains, i.e., the antigen-binding and the I-J-encoded chains. They were linked in covalent association with disulfide bonds. The two chains were cleaved by the reduction with dithiothreitol and were easy to reconstitute the active form of TsF. The association of the two distinct chains was suggested to be essential for the expression of the TsF activity.


1980 ◽  
Vol 151 (5) ◽  
pp. 1183-1195 ◽  
Author(s):  
M S Sy ◽  
M H Dietz ◽  
R N Germain ◽  
B Benacerraf ◽  
M I Greene

Administration of azobenzenearsonate (ABA)-coupled syngeneic spleen cells intravenously to A/J mice leads to the generation of suppressor T cells (Ts1) which exhibit specific binding to ABA-bovine serum albumin (BSA)-coated dishes. These Ts1 share idiotypic determinants with the major cross-reactive idiotype (CRI) of the anti-ABA antibodies of A/J mice, and also produce a soluble suppressor factor (TsF) bearing CRI and I-J subregion-coded determinants. Injection of this TsF into naive A/J mice elicits a second set of specific suppressor cells (Ts2) which are not lysed by anti-CRI antibody plus C, and which do not bind to ABA-BSA-coated dishes. However, in contrast with Ts1, these Ts2 do bind to plates bearing CRI+ anti-ABA immunoglobulin. Thus, Ts2 exhibit anti-idiotypic specificity. These data indicate that antigen elicits the production of a soluble T cell product bearing both variable portion of the Ig heavy chain (VH) and I-J subregion-coded determinants which serves to communicate between T cell subsets to establish an idiotype-anti-idiotype regulatory pathway.


1977 ◽  
Vol 146 (1) ◽  
pp. 49-58 ◽  
Author(s):  
H N Claman ◽  
S D Miller ◽  
M S Sy

Genetic restrictions in generation and expression of hapten-specific suppressor cells for contact sensitivity were found. Dinitrophenol- (DNP) or trinitrophenol-modified mouse spleen cells (SC) induced suppressors in donors able to transfer suppression to normal recipients. When allogeneic DNP-SC were injected into BALB/c mice, cells were generated which were suppressive only in the allogeneic strain providing the DNP-SC. In contrast, when DNP-BALB/c-SC were injected into BALB/c mice, suppressors were generated which were active both in BALB/c and in allogeneic mice (e.g., CBA). This apparent absence of syngeneic major histocompability complex restriction may be explained by cross reactive T-cell receptors which are VH gene products.


1977 ◽  
Vol 145 (6) ◽  
pp. 1559-1566 ◽  
Author(s):  
F L Owen ◽  
S T Ju ◽  
A Nisonoff

All A/J mice produce anti-p-azophenylarsonate (anti-Ar) antibodies, some of which share a cross-reactive idiotype. The idiotype can be suppressed by treatment with anti-idiotypic antiserum before immunization, although normal concentrations of anti-Ar antibodies are synthesized. We have previously reported that such suppressed mice, if hyperimmunized and then allowed to rest, contain up to 10% of splenic T cells which form rosettes with autologous RBC coated with Fab fragments of anti-Ar antibodies bearing the idiotype. Our present results indicate that the rosette-forming T cells include the idiotype-specific suppressor T-cell population. The suppressive activity is largely depleted by removal of the rosette-forming lymphocytes, and the rosettes themselves are highly suppressive. The data do not establish whether all of the idiotype-specific rosette-forming cells are suppressor cells. The system may provide a source of large numbers of suppressor cells for further study, and facilitate investigation of the mechanism of generation of idiotype-specific suppressor cells.


1980 ◽  
Vol 152 (5) ◽  
pp. 1226-1235 ◽  
Author(s):  
M-S Sy ◽  
MH Dietz ◽  
A Nisonoff ◽  
RN Germain ◽  
B Benacerraf ◽  
...  

A/J anti-p-azobenzenearsonate (ABA) antibodies bearing cross-reactive idiotypic (CRI) determinants, when coupled to spleen cells and then injected intravenously into naive animals, stimulate suppressor T cell (Ts) responses. Moreover, previous studies have demonstrated that the ability of such idiotype-coupled spleen cells to induce immune unresponsiveness to subsequent immunization with ABA-coupled spleen cells is linked to Igh-1 genes. Thus, CRI bearing antibodies from A/J mice, when conjugated to normal BALB/c spleen cells in vitro and then injected intravenously to syngeneic BALB/c mice, failed to induce tolerance in these animals. However, spleen cells taken from these animals transferred significant degrees of suppression to Igh-1 congenic C.AL-20 but not to H-2 congenic, Igh-1 distinct B10.D2 mice. Therefore, the failure of CRI-coupled spleen cells to induce suppressor cell- mediated unresponsiveness in animals unable to express the appropriate VH genes (i.e. BALB/c and B10.D2) appears to be caused by the lack of idiotype- matched targets. The notion that the ability to express certain Vn genes in the recipient animal is a prerequisite for suppressor cell function was further supported by the observation that suppressor cells induced in C.AL-20 mice failed to transfer any degree of suppression to BALB/c mice. The ability to transfer suppression from BALB/c mice to C.AL-20 mice is a T cell- dependent phenomenon, since in vitro treatment with anti-Thy 1.2 antiserum and complement completely abrogated suppressor cell function. Furthermore, these suppressor T cells are antigen specific and can be enriched on idiotype-coated petri dishes, indicating they possess anti-idiotypic receptors. Therefore, appropriate anti-idiotype and idiotype interaction is essential for the manifestation of suppressor T cell function in ABA-specific suppressor pathways.


1980 ◽  
Vol 151 (5) ◽  
pp. 1245-1259 ◽  
Author(s):  
R N Germain ◽  
C Waltenbaugh ◽  
B Benacerraf

The occurrence of distinct genetic defects affecting the generation of T cell-derived suppressor factor (TsF) or the suppressive activity of such TsF was investigated. For the synthetic polypeptide L-glutamic acid50-L-tyrosine50 (GT), it could be shown that the nonsuppressor strain A/J fails to produce suppressor T cells (Ts1) capable of GT-TsF generation upon challenge with GT. Conversely, B6, another nonsuppressor strain, produces GT-TsF active on other allogeneic strains such as A/J, but itself fails to be suppressed by this material. (B6A)F1 mice both make GT-TsF, and are suppressed by it. Further experiments revealed that the production of GT-TsF and the ability to be suppressed by GT-TsF are under the control of H-2-linked genes. Finally, the defect in GT-TsF activity in B6 mice was shown to be exquisitely antigen specific, in that this strain can be suppressed by a closely related TsF specific for L-glutamic acid60-L-alanine30-L-tyrosine10. It is suggested that H-2 (I) control of suppressor T cell (Ts) activity may reflect the involvement of I-A and I-C gene products in antigen presentation to Ts in analog with other T cell subsets, and that TsF function might also involve such presentation, in this case of the idiotypic structures of the TsF-combining site. Predictions deriving from this hypothesis are discussed, including the possibility that H-2 linked immune response genes regulate auto-anti-idiotypic responses in immune networks.


1981 ◽  
Vol 154 (2) ◽  
pp. 468-479 ◽  
Author(s):  
K Okuda ◽  
M Minami ◽  
DH Sherr ◽  
ME Dorf

Suppressor factor derived from three different murine T cell hybridomas were characterized . They specifically inhibited 4-hydroxy-3-nitrophenyl acetyl cutaneous sensitivity responses. The factors bind antigen and bear I-J and idiotypic determinants, but lack conventional immunoglobulin constant-region determinants. The factors function during the induction phase of the immune response, by inducing a second population of suppressor cells (Ts(e)). Suppressor factor can inhibit both cellular and plaque-forming cell responses in appropriate strains of mice. These hybridoma suppressor factors directly suppress strains of mice that are Igh-V homologous with the strain producing the factor. Thus, there is an apparent Igh-V restriction in the activity of these factors. However, this is a pseudogenetic restriction because these factors generate second order suppressor cells (Ts(e)) in Igh-incompatible mice, but in order to express the suppressive activity, the cells must be adoptively transferred into recipients that are Igh compatible with the strain producing the suppressor factor. Finally, it was shown that the factor-induced Ts(e) population is under an apparent dual genetic restriction. Thus, Igh and H-2 homology is required in order for the Ts(e) population to express its suppressive activity.


1983 ◽  
Vol 158 (6) ◽  
pp. 1962-1978 ◽  
Author(s):  
J A Kapp ◽  
C M Sorensen ◽  
C W Pierce

We have previously reported that two types of suppressor T cell factors (TsF) specific for L-glutamic acid50-L-tyrosine50 (GT) or L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) can be distinguished based upon differences in their ability to suppress responses by allogeneic mice. Injection of GAT or GT induces a suppressor T cell subset that produces an antigen-binding, I-J+, genetically unrestricted, specific suppressor factor (TsF1). Injection of this factor plus small amounts of antigen induces a second-order suppressor T cell that produces an antigen-binding, I-J+, genetically restricted, specific suppressor factor (TsF2). In this report, we demonstrate that these two factors are also biochemically distinct. Monoclonal TsF1 molecules are composed of a single polypeptide chain that bears both the antigen-binding site and I-J determinant, whereas TsF2 molecules are composed of two disulfide-linked polypeptide chains, one of which is antigen-binding and I-J-, and the other, nonantigen-binding, I-J+. The antigen-binding chain must be added at culture initiation to achieve suppression, but the I-J+ chain can be added as late as day 3 with complete suppression observed. However, isolated chains from TsF2-producing hybridomas derived from three different haplotypes were unable to suppress immune responses when chains from heterologous TsF2 were mixed. Indirect evidence is presented that suggests that this restriction is because the chains fail to interact rather than the inability of the target cells to recognize both chains.


1979 ◽  
Vol 149 (5) ◽  
pp. 1084-1098 ◽  
Author(s):  
B A Bach ◽  
M I Greene ◽  
B Benacerraf ◽  
A Nisonoff

T-cell derived suppressor factor(s) (SF) specific for azobenzenearsonate (ABA) were prepared by the mechanical disruption of suppressor cells. Such suppressor factors were adsorbed to and recovered from immunoadsorbents prepared from the F(ab')2 fragments of rabbit immunoglobulin directed against the cross-reactive idiotype of A/J anti-ABA antibodies. These ABA-suppressor factors were not retained on Sepharose 4B immunoadsorbent columns which had been coupled with F(ab')2 fragments or normal rabbit immunoglobulins prepared from prebleeds of rabbits used to make anti-idiotypic antiserum. The specificity of the F(ab')2 rabbit anti-idiotypic serum was established by direct idiotypic-binding assays and by affinity purification over an immunoadsorbent consisting of CRI+ anti-ABA immunoglobulin from A/J mice. ABA-suppressor factors were shown to be specifically absorbed and eluted from F(ab')2 anti-idiotypic columns. Futhermore, the eluted suppressor factor can be specifically reabsorbed and recovered from a second anti-idiotypic immunoadsorbent. The concordance between antigen-binding specificity and the presence of idiotypic determinants was demonstrated by adsorbing ABA SF to antigen columns and then fractionating the ABA-specific factor on anti-idiotypic immunoadsorbents. ABA-suppressor factors were shown to be specifically retained on immunoadsorbents directed against major histocompatibility complex (MHC) determinants. Factor eluted from anti-MHC columns could then be specifically adsorbed to anti-idiotypic immunoadsorbents. This suggests that the same molecular complex that is recognized by the H-2 alloantiserum is specifically adsorbed to an anti-idiotypic immunoadsorbent. Genetic analysis of the expression of CRI+ suppressor factor was performed using the C.AL-20 mouse strain which has the AL/N allotype and produces CRI+ anti-ABA immunoglobulins. The implication of these findings to the nature of T-cell-derived regulatory molecules is discussed.


Sign in / Sign up

Export Citation Format

Share Document