ig heavy chain
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 10)

H-INDEX

50
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jongmin Lee ◽  
Jung-hyun Rho ◽  
Michael H. Roehrl ◽  
Julia Y. Wang

Dermatan sulfate (DS) and autoantigen (autoAg) complexes are capable of stimulating autoreactive CD5+ B1 cells. We examined the activity of DS on CD5+ pre-B lymphoblast NFS-25 cells. CD19, CD5, CD72, PI3K, and Fas possess varying degrees of DS affinity. The three pre-BCR components, Ig heavy chain mu (IgH), VpreB, and lambda 5, display differential DS affinities, with IgH having the strongest affinity. DS attaches to NFS-25 cells, gradually accumulates in the ER, and eventually localizes to the nucleus. DS and IgH co-localize on the cell surface and in the ER. DS associates strongly with 17 ER proteins (e.g., BiP/Grp78, Grp94, Hsp90ab1, Ganab, Vcp, Canx, Kpnb1, Prkcsh, Pdia3), which points to an IgH-associated multiprotein complex in the ER. In addition, DS interacts with nuclear proteins (Ncl, Xrcc6, Prmt5, Eftud2, Supt16h) and Lck. We also discovered that DS binds GTF2I, a required gene transcription factor at the IgH locus. These findings support DS as a potential regulator of IgH in pre-B cells at protein and gene levels. We propose a (DS•autoAg)-autoBCR dual signal model in which an autoBCR is engaged by both autoAg and DS, and, once internalized, DS recruits a cascade of molecules that may help avert apoptosis and steer autoreactive B cell fate. Through its affinity with autoAgs and its control of IgH, DS emerges as a potential key player in the development of autoreactive B cells and autoimmunity.


Author(s):  
Jongmin Lee ◽  
Jung-hyun Rho ◽  
Michael H. Roehrl ◽  
Julia Y. Wang

AbstractDermatan sulfate (DS) and autoantigen (autoAg) complexes are capable of stimulating autoreactive CD5+ B-1 cells. We examined the activity of DS on CD5+ pre-B lymphoblast NFS-25 cells. CD19, CD5, CD72, PI3K, and Fas possess varying degrees of DS affinity. The three pre-BCR components, Ig heavy chain mu (IgH), VpreB, and lambda 5, display differential DS affinities, with IgH having the strongest affinity. DS attaches to NFS-25 cells, gradually accumulates in the ER, and eventually localizes to the nucleus. DS and IgH co-localize on the cell surface and in the ER. DS associates strongly with 17 ER proteins (e.g., BiP/Grp78, Grp94, Hsp90ab1, Ganab, Vcp, Canx, Kpnb1, Prkcsh, Pdia3), which points to an IgH-associated multiprotein complex in the ER. In addition, DS interacts with nuclear proteins (Ncl, Xrcc6, Prmt5, Eftud2, Supt16h) and Lck. We also discovered that DS binds GTF2I, a required gene transcription factor at the IgH locus. These findings support DS as a potential master regulator of IgH in pre-B cells at protein and gene levels. We propose a (DS•autoAg)-autoBCR dual signal model in which an autoBCR is engaged by both autoAg and DS, and, once internalized, DS recruits a cascade of molecules that may help avert apoptosis and steer autoreactive B cell fate. Through its affinity with autoAgs and its control of IgH, DS emerges as a potential key player in the development of autoreactive B cells and autoimmunity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tanya Kapoor ◽  
Mauro Corrado ◽  
Erika L. Pearce ◽  
Edward J. Pearce ◽  
Rudolf Grosschedl

AbstractMZB1 is an endoplasmic reticulum (ER)-resident protein that plays an important role in the humoral immune response by enhancing the interaction of the μ immunoglobulin (Ig) heavy chain with the chaperone GRP94 and by augmenting the secretion of IgM. Here, we show that MZB1 is also expressed in plasmacytoid dendritic cells (pDCs). Mzb1−/− pDCs have a defect in the secretion of interferon (IFN) α upon Toll-like receptor (TLR) 9 stimulation and a reduced ability to enhance B cell differentiation towards plasma cells. Mzb1−/− pDCs do not properly expand the ER upon TLR9 stimulation, which may be accounted for by an impaired activation of ATF6, a regulator of the unfolded protein response (UPR). Pharmacological inhibition of ATF6 cleavage in stimulated wild type pDCs mimics the diminished IFNα secretion by Mzb1−/− pDCs. Thus, MZB1 enables pDCs to secrete high amounts of IFNα by mitigating ER stress via the ATF6-mediated UPR.


2020 ◽  
Vol 8 (1) ◽  
pp. 145-169
Author(s):  
Yi Sun ◽  
Tian Huang ◽  
Lennart Hammarström ◽  
Yaofeng Zhao

Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: ( a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and ( b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.


2020 ◽  
Vol 171 (4) ◽  
pp. 671-682
Author(s):  
Domenico Frezza ◽  
Cristina Martinez‐Labarga ◽  
Vincenzo Giambra ◽  
Eliseo Serone ◽  
Giuseppina Scano ◽  
...  

2019 ◽  
Vol 117 (1) ◽  
pp. 292-299 ◽  
Author(s):  
Lynn E. Macdonald ◽  
Karoline A. Meagher ◽  
Matthew C. Franklin ◽  
Natasha Levenkova ◽  
Johanna Hansen ◽  
...  

We describe a Kappa-on-Heavy (KoH) mouse that produces a class of highly diverse, fully human, antibody-like agents. This mouse was made by replacing the germline variable sequences of both the Ig heavy-chain (IgH) and Ig kappa (IgK) loci with the human IgK germline variable sequences, producing antibody-like molecules with an antigen binding site made up of 2 kappa variable domains. These molecules, named KoH bodies, structurally mimic naturally existing Bence-Jones light-chain dimers in their variable domains and remain wild-type in their antibody constant domains. Unlike artificially diversified, nonimmunoglobulin alternative scaffolds (e.g., DARPins), KoH bodies consist of a configuration of normal Ig scaffolds that undergo natural diversification in B cells. Monoclonal KoH bodies have properties similar to those of conventional antibodies but exhibit an enhanced ability to bind small molecules such as the endogenous cardiotonic steroid marinobufagenin (MBG) and nicotine. A comparison of crystal structures of MBG bound to a KoH Fab versus a conventional Fab showed that the KoH body has a much deeper binding pocket, allowing MBG to be held 4 Å further down into the combining site between the 2 variable domains.


2019 ◽  
Vol 116 (29) ◽  
pp. 14708-14713 ◽  
Author(s):  
Joana M. Santos ◽  
Fatima-Zohra Braikia ◽  
Chloé Oudinet ◽  
Audrey Dauba ◽  
Ahmed Amine Khamlichi

B cell isotype switching plays an important role in modulating adaptive immune responses. It occurs in response to specific signals that often induce different isotype (I) promoters driving transcription of switch regions, located upstream of the Ig heavy chain (IgH) constant genes. The transcribed switch regions can recombine, leading to a change of the constant gene and, consequently, of antibody isotype. Switch transcription is controlled by the superenhancer 3′ regulatory region (3′RR) that establishes long-range chromatin cis-interactions with I promoters. Most stimuli induce more than one I promoter, and switch transcription can occur on both chromosomes. Therefore, it is presently unknown whether induced I promoters compete for the 3′RR on the same chromosome. Here we performed single-chromosome RT-qPCR assays to examine switch transcription monoallelically in the endogenous context. We show that there are two modes of 3′RR-mediated activation of I promoters: coactivation and competition. The nature of the inducing signal plays a pivotal role in determining the mode of activation. Furthermore, we provide evidence that, in its endogenous setting, the 3′RR has a bidirectional activity. We propose that the coactivation and competition modes mediated by the 3′RR may have evolved to cope with the different kinetics of primary immune responses.


Sign in / Sign up

Export Citation Format

Share Document