scholarly journals Cellular basis of graft versus host tolerance in chimeras prepared with total lymphoid irradiation.

1980 ◽  
Vol 152 (3) ◽  
pp. 736-741 ◽  
Author(s):  
M Gottlieb ◽  
S Strober ◽  
H S Kaplan

BALB/c mice given allogeneic (C57BL/Ka) bone marrow cells after toal lymphoid irradiation become stable chimeras approximately 80% donor-type and 20% host-type cells in the spleen. The chimeras doe not develop graft vs. host disease (GVHD). Purified cells of C57BL/Ka origin from the chimeras mediated GVHD in lightly irradiated C3H (third party), but not in BALB/c (host-strain) mice. Thus graft vs. host tolerance in the chimeras could not be explained by complete immunodeficiency of donor-type cells, serum blocking factors, or suppressor cells of host (BALB/c) origin. Clonal deletion or suppression of lymphocytes reactive with host tissues remain possible explanations. The transfer of donor-type chimeric spleen cells to BALB/c recipients given 500-550 rad whole-body irradiation WBI led to stable mixed chimerism in approximately 50% of recipients. The cells were presumably acting as tolerogens because similarly irradiated BALB/c mice given (BALB/c X C57BL/Ka)F1 spleen or bone marrow cells also became stable mixed chimeras.

Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 939-948 ◽  
Author(s):  
Y Tomita ◽  
DH Sachs ◽  
M Sykes

Abstract We have investigated the requirement for whole body irradiation (WBI) to achieve engraftment of syngeneic pluripotent hematopoietic stem cells (HSCs). Recipient B6 (H-2b; Ly-5.2) mice received various doses of WBI (0 to 3.0 Gy) and were reconstituted with 1.5 x 10(7) T-cell-depleted (TCD) bone marrow cells (BMCs) from congenic Ly-5.1 donors. Using anti-Ly-5.1 and anti-Ly-5.2 monoclonal antibodies and flow cytometry, the origins of lymphoid and myeloid cells reconstituting the animals were observed over time. Chimerism was at least initially detectable in all groups. However, between 1.5 and 3 Gy WBI was the minimum irradiation dose required to permit induction of long-term (at least 30 weeks), multilineage mixed chimerism in 100% of recipient mice. In these mice, stable reconstitution with approximately 70% to 90% donor-type lymphocytes, granulocytes, and monocytes was observed, suggesting that pluripotent HSC engraftment was achieved. About 50% of animals conditioned with 1.5 Gy WBI showed evidence for donor pluripotent HSC engraftment. Although low levels of chimerism were detected in untreated and 0.5-Gy-irradiated recipients in the early post-BM transplantation (BMT) period, donor cells disappeared completely by 12 to 20 weeks post-BMT. BM colony assays and adoptive transfers into secondary lethally irradiated recipients confirmed the absence of donor progenitors and HSCs, respectively, in the marrow of animals originally conditioned with only 0.5 Gy WBI. These results suggest that syngeneic pluripotent HSCs cannot readily engraft unless host HSCs sustain a significant level of injury, as is induced by 1.5 to 3.0 Gy WBI. We also attempted to determine the duration of the permissive period for syngeneic marrow engraftment in animals conditioned with 3 Gy WBI. Stable multilineage chimerism was uniformly established in 3-Gy-irradiated Ly-5.2 mice only when Ly-5.1 BMC were injected within 7 days of irradiation, suggesting that repair of damaged host stem cells or loss of factors stimulating engraftment may prevent syngeneic marrow engraftment after day 7.


Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 939-948 ◽  
Author(s):  
Y Tomita ◽  
DH Sachs ◽  
M Sykes

We have investigated the requirement for whole body irradiation (WBI) to achieve engraftment of syngeneic pluripotent hematopoietic stem cells (HSCs). Recipient B6 (H-2b; Ly-5.2) mice received various doses of WBI (0 to 3.0 Gy) and were reconstituted with 1.5 x 10(7) T-cell-depleted (TCD) bone marrow cells (BMCs) from congenic Ly-5.1 donors. Using anti-Ly-5.1 and anti-Ly-5.2 monoclonal antibodies and flow cytometry, the origins of lymphoid and myeloid cells reconstituting the animals were observed over time. Chimerism was at least initially detectable in all groups. However, between 1.5 and 3 Gy WBI was the minimum irradiation dose required to permit induction of long-term (at least 30 weeks), multilineage mixed chimerism in 100% of recipient mice. In these mice, stable reconstitution with approximately 70% to 90% donor-type lymphocytes, granulocytes, and monocytes was observed, suggesting that pluripotent HSC engraftment was achieved. About 50% of animals conditioned with 1.5 Gy WBI showed evidence for donor pluripotent HSC engraftment. Although low levels of chimerism were detected in untreated and 0.5-Gy-irradiated recipients in the early post-BM transplantation (BMT) period, donor cells disappeared completely by 12 to 20 weeks post-BMT. BM colony assays and adoptive transfers into secondary lethally irradiated recipients confirmed the absence of donor progenitors and HSCs, respectively, in the marrow of animals originally conditioned with only 0.5 Gy WBI. These results suggest that syngeneic pluripotent HSCs cannot readily engraft unless host HSCs sustain a significant level of injury, as is induced by 1.5 to 3.0 Gy WBI. We also attempted to determine the duration of the permissive period for syngeneic marrow engraftment in animals conditioned with 3 Gy WBI. Stable multilineage chimerism was uniformly established in 3-Gy-irradiated Ly-5.2 mice only when Ly-5.1 BMC were injected within 7 days of irradiation, suggesting that repair of damaged host stem cells or loss of factors stimulating engraftment may prevent syngeneic marrow engraftment after day 7.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640
Author(s):  
LM Pelus ◽  
PS Gentile

Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


2008 ◽  
Vol 51 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Miroslav Hodek ◽  
Jiřina Vávrová ◽  
Zuzana Šinkorová ◽  
Jaroslav Mokrý ◽  
Stanislav Filip

Experiments presented here were aimed at the description of hematopoiesis repair and in vivo homing of transplanted separated CD117+B220–bone marrow cells after whole-body lethal irradiation at LD 9Gy. ROSA 26 mice were used as donors of marrow cells for transplantation [B6;129S/Gt (ROSA)26Sor] and were tagged with lacZ gene, and F2 hybrid mice [B6129SF2/J] were used as recipients of bone marrow transplanted cells. Hematopoiesis repair was provided by transplantation, both suspension of whole bone marrow cells (5x106) and isolated CD117+B220–cells (5x104). Mice survived up to thirty days after irradiation. We demonstrated that transplantation of suspension of whole bone marrow cells led to faster recovery of CFU-GM (Granulocyte-macrophage colony forming units) in bone marrow and in the spleen too. It is not clear what the share of residential and transplanted cells is in the repair process. Our results demonstrate that sufficient hematopoietic repair occurs after transplantation of CD117+B220–(lacZ+) in lethally irradiated mice, and the difference in CFU-GM numbers in the bone marrow and spleen found on day 8 posttransplant has no influence on the survival of lethally irradiated mice (30 days follow-up).


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640 ◽  
Author(s):  
LM Pelus ◽  
PS Gentile

Abstract Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2376-2383 ◽  
Author(s):  
Ronald van Os ◽  
Donald Dawes ◽  
John M.K. Mislow ◽  
Alice Witsell ◽  
Peter M. Mauch

Abstract Administration of kit-ligand (KL) before and after doses of 5-fluorouracil (5-FU) results in marrow failure in mice, presumably because of enhanced KL-induced cycling of stem cells, which makes them more susceptible to the effects of 5-FU. In attempt to capitalize on this effect on stem cells, we studied the ability of KL and 5-FU to allow stable donor engraftment of congenically marked marrow in a C57BL/6 (B6) mouse model. KL was administered subcutaneously at 50 μg/kg, 21 hours and 9 hours before and 3 hours after each of two doses of 5-FU (125 mg/kg) given 7 days apart to B6-recipients. Animals then received three injections of 107 congenic B6-Gpi-1a-donor bone marrow cells at 24, 48, and 72 hours after the second 5-FU dose. A separate group of animals received a single dose of either 1 × 107 or 3 × 107 donor marrow cells 24 hours after the last 5-FU dose. The level of engraftment was measured from Gpi-phenotyping at 1, 3, 6, and 8 months in red blood cells (RBCs) and at 8 months by phenotyping cells from the thymus, spleen, and marrow. Percent donor engraftment in RBCs appeared stable after 6 months. The percent donor engraftment in RBCs at 8 months was significantly higher in KL + 5-FU prepared recipients (33.0 ± 2.7), compared with 5-FU alone (18.5 ± 2.6, P < .0005), or saline controls (17.8 ± 1.7, P < .0001). In an additional experiment, granulocyte colony-stimulating factor (100 μg/dose) was added to a reduced dose of KL (12.5 μg/dose); engraftment was similar to KL alone. At 8 months after transplantation the levels of engraftment in other tissues such as bone marrow, spleen, and thymus correlated well with erythroid engraftment to suggest that multipotent long-term repopulating stem cells had engrafted in these animals. There are concerns for the toxicity of total body irradiation (TBI)- or busulfan-based regimens in young recipients of syngeneic or transduced autologous marrow who are transplanted for correction of genetic disease. In these recipients complete donor engraftment may not be needed. The results with KL and 5-FU are encouraging for the further refinement of non-TBI, nonbusulfan techniques to achieve stable mixed chimerism.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1060-1066 ◽  
Author(s):  
M Miura ◽  
CW Jackson ◽  
SA Lyles

Abstract To gain insight into the regulation of megakaryocyte precursors in vivo, we assayed (in vitro) megakaryocyte growth-promoting activity (Meg-GPA) in plasma of rats in which both marrow hypoplasia and thrombocytopenia had been induced by irradiation. Rats received whole body irradiation of 834 rad from a 137Cs source. Plasma was collected at intervals of hours to days, up through day 21 postirradiation, and was tested, at a concentration of 30%, for Meg-GPA on bone marrow cells cultured in 1.1% methylcellulose with 5 X 10(-5) M 2-mercaptoethanol. With normal rat plasma, no megakaryocyte colonies (defined as greater than or equal to 4 megakaryocytes) were seen and only a few single megakaryocytes and clusters (defined as 2 or 3 megakaryocytes) were formed. Two peaks of plasma Meg-GPA were observed after irradiation. The first appeared at 12 hr, before any decrease in marrow megakaryocyte concentration or platelet count. The second occurred on days 10–14 after irradiation, after the nadir in megakaryocyte concentration and while platelet counts were at their lowest levels. A dose-response study of plasma concentration and megakaryocyte growth, using plasma collected 11 days postirradiation, demonstrated that patterns of megakaryocyte growth were related to plasma concentration; formation of single megakaryocytes was optimal over a range of 20%-30% plasma concentration, while cluster and colony formation were optimal at a plasma concentration of 30%. All forms of megakaryocyte growth were decreased with 40% plasma. There was a linear relationship between the number of bone marrow cells plated and growth of single cells, clusters, and colonies using a concentration of 30% plasma collected 11 days after irradiation. We conclude that irradiation causes time- related increases in circulating megakaryocyte growth-promoting activity. We suggest that the irradiated rat is a good model for studying the relationships between Meg-GPA and megakaryocyte and platelet concentration in vivo.


1992 ◽  
Vol 175 (3) ◽  
pp. 863-868 ◽  
Author(s):  
K Hiruma ◽  
H Nakamura ◽  
P A Henkart ◽  
R E Gress

Veto cell-mediated suppression of cytotoxic T lymphocyte (CTL) responses has been proposed as one mechanism by which self-tolerance is maintained in mature T cell populations. We have previously reported that murine bone marrow cells cultured in the presence of high-dose interleukin 2 (IL-2) (activated bone marrow cells [ABM]) mediate strong veto suppressor function. To examine mechanisms by which ABM may suppress precursor CTL (p-CTL) responses, we used p-CTL generated from spleen cells of transgenic mice expressing a T cell receptor specific for H-2 Ld. It was demonstrated that the cytotoxic response by these p-CTL after stimulation with irradiated H-2d/k spleen cells was suppressed by DBA/2 (H-2d) ABM, but not by B10.BR (H-2k) ABM or dm1 (Dd, Ld mutant) ABM. Flow cytometry analysis with propidium iodide staining revealed that these p-CTL were specifically deleted by incubation with H-2d ABM, but not with H-2k ABM. These data indicate that ABM veto cells kill p-CTL with specificity for antigens expressed on the surface of the ABM, and that the mechanism for veto cell activity of ABM is clonal deletion of p-CTL.


Sign in / Sign up

Export Citation Format

Share Document