scholarly journals Role of the H-2 complex in induction of T helper cells in vivo. II Negative selection of discrete subgroups of T cells restricted by I-A and I-A/E determinants.

1981 ◽  
Vol 153 (4) ◽  
pp. 823-831 ◽  
Author(s):  
J Sprent ◽  
B Alpert

Previous studies have shown that negative selection of T cells to sheep erythrocytes (SRC) after adoptive transfer to irradiated mice requires a sharing of H-2 determinants between the donor T cells and the selection hosts. This paper examines which part of the H-2 complex controls selection. The results show that, in the case of T cells of the H-2k haplotype, complete selection occurs with donor host matching limited to the I-A through I-E subregions of the H-2 complex. Selection to SRC was partial in I-A compatible, I-E incompatible hosts, minimal or not detectable in I-A incompatible, I-E compatible hosts, but near-complete in hosts matched at both the I-A and I-E subregions. Consecutive selection in hosts matched solely at (a) the I-A subregion and (b) the I-E subregion led to incomplete selection. From these and other findings it is argued that H-2k T cells comprise a mixture of T cells restricted by I-A and I-A/E hybrid molecules.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4518-4518
Author(s):  
Yitong Wang ◽  
Yiwen Li ◽  
Jianming Li ◽  
Jingxia Li ◽  
Edmund K. Waller

Abstract Introduction: In allogeneic hematopoietic stem cell transplant (AHSCT), donor T cells promote hematopoietic engraftment, reconstitute T-cell immunity and mediate potent beneficial antitumor effects, such as graft versus leukemia (GVL) as well as detrimental graft-versus-host disease (GVHD). We have shown that purified bone marrow pDC to a donor graft composed of purified HSC and T cells significantly improved long-term leukemia-free survival without increasing the risk of GVHD (Lu BLOOD 2012). Vasoactive intestinal peptide (VIP) is a neuropeptide/neurotransmitter, which acts as a major anti-inflammatory factor in animal models of inflammatory and autoimmune diseases. VIP is produced by T cells and dendritic cells under conditions of inflammation (Li Cancer Research 2016). VIP-signaling, thus represents a newly appreciated co-inhibitory pathway involved in T cell activation and expansion and persistence of antigen-specific T cells, but the role of VIP produced by donor dendritic cells in allo-BMT is unclear. Our previous data has shown that production of VIP in pDC improves survival in a murine allo-BMT model. Since the thymus plays a critical role in regenerating naive T cells in which allo-reactive donor T cells undergoes central deletion. We hypothesized that donor pDCs that home to thymus modulate the negative selection of allo-reactive T cells and iTreg production through VIP signaling. Methods and Results: Our previous data has shown that the mice receiving HSC, T cells and WT pDC had a significantly higher survival (71%) compared to those receiving VIP-KO pDC (31%). On day 15 after transplant, recipients of WT pDC, VIP-KO pDC and no pDC developed ~98% chimerism, without significant differences among the three groups. Local production of VIP in pDC inhibited activation and Th1 immune polarization of donor T cells. Recipient spleens were harvested on day 15 after transplant for analysis of cytokine production by donor T cells. The percentage of CD8+ donor T cells producing IL17 was significantly higher in recipients of VIP-KO pDC compared to recipients of WT-pDC (Fig 2.A-B). The ratio of foxp3+ CD4+ donor T-reg to IL17+ CD4+ T cells from recipients of WT pDC was almost 3 times higher than the recipients of VIP-KO pDC (Fig 2.C-D). To visualize production of VIP by donor pDC, B10.BR mice were transplanted with 5,000 stem cells, 1M T cells and 50,000 pDCs from VIP-GFP (VIP promoter and GFP reporter) or GFP mice. On day 7 post-transplant, the thymus was examined with confocal microscopy with GFP (green), anti-PDCA-1-Alexa Fluor 568 (red) and DAPI (blue). A superimposed profile of the thymus showed that donor GFP pDCs homed to thymus (Fig.2-A), and that donor pDC in the recipient thymus produced VIP (Fig.2-B). Conclusion: Expression of VIP in donor pDCs inhibited activation and Th17 immune polarization of donor CD8+ T cells after allo-BMT. Foxp3+ expression tended to be higher among CD4+ donor T cells from recipients of WT pDCs compared with recipients of VIP-KO pDCs. Thus, VIP-producing donor pDC in thymus could be very critical to contribute to negative selection of allo-reactive donor T cell or facilitate the generation of Foxp3+ nTreg. This data supported a new mechanism by which GvHD maybe regulated and central tolerance maintained. Ongoing experiments aim at defining the role of VIP production in the thymus by donor pDC in positive and negative T cell selection. Disclosures Waller: Celldex: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cambium Medical Technologies: Consultancy, Equity Ownership; Kalytera: Consultancy; Pharmacyclics: Other: Travel Expenses, EHA, Research Funding.


1979 ◽  
Vol 149 (2) ◽  
pp. 387-397 ◽  
Author(s):  
J Sprent ◽  
H von Boehmer

Parent leads to F1 chimeras were prepared by reconstituting sublethally irradiated H-2 heterozygous mice with marrow cells from one parental strain. Purified parental strain T cells prepared from unprimed chimeras were exposed to sheep erythrocytes in heavily irradiated mice of each of the two parental strains and recovered from thoracic duct lymph of the recipients at either day 1 or day 5 posttransfer. The lymphoborne cells were then tested for their capacity to collaborate in vivo with B cells of the two parental strains. From this approach it was concluded that parent leads to F1 chimera T cells contain two discrete subgroups of T-helper cells, one specific for self H-2 determinants and the other restricted to H-2 determinants of the opposite parental strain. The restrictions mapped to the K-end of the H-2 complex.


1982 ◽  
Vol 155 (2) ◽  
pp. 548-556 ◽  
Author(s):  
B Alpert ◽  
J Sprent

Previous studies on negative selection of T cells to sheep erythrocytes in irradiated mice showed that CBA (I-Ak,I-Ek) (kk) T cells comprise two subgroups of cells restricted by I-A (A alpha-A beta) and I-A/E (E alpha-E beta) molecules. Selection of the I-A/E-restricted by I-A (A alpha-A beta) and I-A/E (E alpha-E beta) molecules. Selection of the I-A/E-restricted subset requires that the donor T cells and the selection host share both I-A (E beta) and I-E (E alpha) gene products; only the I-A-restricted cells undergo selection in B10.A(4R) (kb) mice. This paper demonstrates that negative selection of the I-A/E-restricted subgroup of CBA T cells can occur in F1 hybrids between B10.A(4R) and various Ia.7+ (E alpha+) I-E-incompatible strains; selection does not occur in hybrids between B10.A(4R) and Ia.7- (E alpha-) strains. These data suggest that, despite the fact that E alpha chains display detectable structural allelic variations, these chains are functionally nonpolymorphic. This conclusion applies to E alpha k,d,p,r,j chains. With F1 hybrids between B10.A(4R) and another Ia.7+ strain, B10.PL (H-2u), in contrast, only intermediate selection is observed. This finding is consistent with recent evidence that cell surface expression of E alpha-u-E beta dimers displays strong cis preference. In contrast to E alpha+ CBA T cells, E alpha- B10.A(4R) (kb) T cells undergo complete negative selection in hosts matched only in the I-A (and H-2K) subregion, i.e., B10.BR (kk) mice; no selection occurs in B10 (bb) mice. These data imply that Ia-restricted T cells in E alpha- strains are probably restricted solely by I-A molecules.


1998 ◽  
Vol 187 (9) ◽  
pp. 1427-1438 ◽  
Author(s):  
Hidehiro Kishimoto ◽  
Charles D. Surh ◽  
Jonathan Sprent

To seek information on the role of Fas in negative selection, we examined subsets of thymocytes from normal neonatal mice versus Fas-deficient lpr/lpr mice injected with graded doses of antigen. In normal mice, injection of 1–100 μg of staphylococcal enterotoxin B (SEB) induced clonal elimination of SEB-reactive Vβ8+ cells at the level of the semi-mature population of HSAhi CD4+ 8− cells found in the thymic medulla; deletion of CD4+ 8+ cells was minimal. SEB injection also caused marked elimination of Vβ8+ HSAhi CD4+ 8− thymocytes in lpr/lpr mice. Paradoxically, however, elimination of these cells in lpr/lpr mice was induced by low-to-moderate doses of SEB (≤1 μg) but not by high doses (100 μg). Similar findings applied when T cell receptor transgenic mice were injected with specific peptide. These findings suggest that clonal elimination of semi-mature medullary T cells is Fas independent at low doses of antigen but Fas dependent at high doses. Previous reports documenting that negative selection is not obviously impaired in lpr/lpr mice could thus reflect that the antigens studied were expressed at only a low level.


1994 ◽  
Vol 179 (4) ◽  
pp. 1273-1283 ◽  
Author(s):  
R Manetti ◽  
F Gerosa ◽  
M G Giudizi ◽  
R Biagiotti ◽  
P Parronchi ◽  
...  

Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen-specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN-gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.


1994 ◽  
Vol 180 (4) ◽  
pp. 1273-1282 ◽  
Author(s):  
M B Graham ◽  
V L Braciale ◽  
T J Braciale

T lymphocytes play a primary role in recovery from viral infections and in antiviral immunity. Although viral-specific CD8+ and CD4+ T cells have been shown to be able to lyse virally infected targets in vitro and promote recovery from lethal infection in vivo, the role of CD4+ T lymphocytes and their mechanism(s) of action in viral immunity are not well understood. The ability to further dissect the role that CD4+ T cells play in the immune response to a number of pathogens has been greatly enhanced by evidence for more extensive heterogeneity among the CD4+ T lymphocytes. To further examine the role of CD4+ T cells in the immune response to influenza infection, we have generated influenza virus-specific CD4+ T cell clones from influenza-primed BALB/c mice with differential cytokine secretion profiles that are defined as T helper type 1 (Th1) clones by the production of interleukin 2 (IL-2) and interferon gamma (IFN-gamma), or as Th2 clones by the production of IL-4, IL-5, and IL-10. Our studies have revealed that Th1 clones are cytolytic in vitro and protective against lethal challenge with virus in vivo, whereas Th2 clones are noncytolytic and not protective. Upon further evaluation of these clonal populations we have shown that not only are the Th2 clones nonprotective, but that pulmonary pathology is exacerbated as compared with control mice as evidenced by delayed viral clearance and massive pulmonary eosinophilia. These data suggest that virus-specific CD4+ T cells of the Th2 subset may not play a primary role in virus clearance and recovery and may lead to immune mediated potentiation of injury.


1978 ◽  
Vol 148 (2) ◽  
pp. 478-489 ◽  
Author(s):  
J Sprent

When purified CBA lymph node T cells were mixed with sheep erythrocytes (SRC) and filtered from blood to lymph through irradiated syngeneic mice for 1-2 days, the donor cells lost their capacity to stimulate anti-SRC responses by CBA B cells; the response to a third-party antigen (horse erythrocytes) was unaffected and active suppression was not involved. This process of specific negative selection to SRC also occurred when semiallogeneic mice were used as filtration hosts. By contrast, when allogeneic hosts were used the helper function of the donor cells was not reduced; this applied to both primed and unprimed T cells. Studied with congeneic resistant strains indicated that negative selection to SRC occurred only when the donor and host shared H-2 determinants. Studies with T cells depleted of alloreactive lymphocytes showed that negative selection to SRC in irradiated F1 hybrid mice was followed by a stage of positive selection where the donor cells gave greatly increased responses to the injected antigen. Positive selection did not occur in H-2-different mice, however, and the helper function of the donor cells remained unchanged. By these parameters it was concluded that homozygous T helper cells have no detectable capacity to recognize antigen in an H-2-different environment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3313-3313
Author(s):  
Jochen T Frueh ◽  
Bushra Rais ◽  
Daniele Yumi Sunaga-Franze ◽  
Katja Stein ◽  
Sascha Sauer ◽  
...  

Abstract Introduction: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapy for severe malignant diseases. Following allo-HSCT, donor T cells are the driving force for eradication of the remaining malignant cells known as graft-versus-tumor (GVT) effect. However, these alloreactive T cells are also responsible for induction of graft-versus-host disease (GVHD). To date, the role of the different Thelper (Th) subsets in the pathogenesis of GVHD is not completely understood. Interestingly, these subsets share expression of a transcription factor called Interferon Regulatory Factor 4 (IRF4), which is proposed as a master regulator of cell fate decision of T cells. This project aims to analyze the role of IRF4 in Th cell polarization during the development of GVHD. Methods: In mixed lymphocyte reaction (MLR), we analyzed the proliferation capacity of CFSE-labelled IRF4-deficient (IRF4-/-) T cells upon allogeneic stimulation by LPS-induced dendritic cells (DC). For analyzing the impact of IRF4 in vivo, we used previously published complete MHC-mismatched murine GVHD model (Ullrich et al., J Clin Invest, 2018). Herein, we investigated the alloreactivity of the transplanted donor T cells towards GVHD target organs with focus on colonic tissue. Additionally, RNA sequencing of re-isolated and high purity FACS-sorted donor Th cells were performed to get a deep insight into the IRF4-mediated regulation of Th cell polarization. Results: In the MLR setting, reduced CFSE dilution indicated a diminished proliferative capacity of both CD4+ and CD8+ IRF4-/- T cells compared to the corresponding WT (IRF4+/+) T cell subsets upon allogeneic stimulation (Figure 1A). Furthermore, while alloreactive WT CD4+ T cells induced severe forms of GVHD in vivo, clinical GVHD symptoms of recipients transplanted with IRF4-/- CD4+ T cells were significantly reduced and these mice showed prolonged overall survival (Figure 1B). Analyzing the mechanism, we found that the frequency of in vivo circulating donorCD4+ IRF4-/- T cells was reduced compared to transplanted WT Th cells, especially in the GVHD target organs such as the colon. However, IRF4-/- Th cells persisted in spleen, lung and colon even if they showed a reduced proliferative capacity. In line with that, colonoscopy of mice transplanted with IRF4-deficient Th cells revealed a significant reduction of GVHD associated colitis. Transcriptome analysis of re-isolated and high purity FACS-sorted donor Th cells depicted an altered gene expression profile in donor IRF4-/- Th cells compared to donor WT Th cells. Specifically, master regulators of Th cell subsets like T-bet (Th1), RORγt (Th17) and to some amount also GATA-3 (Th2) were downregulated in donor IRF4-/- Th cells whereas FoxP3, the master regulator of regulatory T cells (Treg cells), was significantly upregulated. Along the same line cytokines associated with Th1, Th2 and Th17 cell subsets such as IFN-γ, IL-21, IL-6 and IL-13 were also significantly downregulated. Besides genes that are associated with Treg cell function like Helios, FR4 (folate receptor 4) and Neuropilin 1, a transcriptional repressor, Bach2, which regulates the formation of Treg cells and suppresses Th1, Th2 and Th17 subset differentiation was highly upregulated (Tsukumo et al., Proc Natl Acad Sci U S A, 2013; Kim et al., J Immunol, 2014 ; Roychoudhuri et al., Nature, 2013 ; Vahedi et al., Nature, 2015). Along with the upregulation of Bach2 and the significant downregulation of Blimp1, another transcriptional repressor involved in T cell homeostasis and function as well as direct target of Bach2, we hypothesize that IRF4 might compete with BACH2 for the binding to BATF. These hypotheses also rely on our previous finding of BATF as critical mediator of GVHD colitis and are currently under further evaluation (Ullrich et al., J Clin Invest, 2018). Conclusion: In summary, our results indicate that IRF4 plays a key role in regulation of the Th cell polarization and therefore also in the development of GVHD. Thus, IRF4 in its interplay with BATF might be considered as a clinically relevant target for GVHD therapy. Disclosures No relevant conflicts of interest to declare.


1983 ◽  
Vol 158 (3) ◽  
pp. 811-821 ◽  
Author(s):  
M McNamara ◽  
H Kohler

In this study T helper cells that recognize idiotypes as carriers for a hapten-specific B cell response were analyzed under limiting dilution conditions. T helper cells, induced by phosphorylcholine-hemocyanin (PC-Hy) priming, recognize trinitrophenylated TEPC-15 and MOPC-167 (TNP-T15, TNP-167) equally well. Limiting dilution analysis indicates identical frequencies of helper cells for TNP-T15 and TNP-167. Double immunization protocols using TNP-T15 and TNP-167 fail to demonstrate additive effects. Inhibition of carrier recognition in vitro using free hapten, PC, and unconjugated T15 or M167 indicates identical specificities of helper cells for T15 and M167. Collectively, these results provide strong evidence that PC-Hy priming induces only one population of idiotype-recognizing helper cells that are unable to distinguish between the T15 and the M167 idiotopes. The helper cell induction circuit was further analyzed. PC-Hy priming induces T15/167-specific helper T cells in X-linked immune defect-expressing F1 mice. This indicates that a B cell response to PC is not required to induce idiotype-recognizing T cells. Adoptive cotransfer of B cells from PC-Hy-primed mice together with normal T cells fails to induce idiotype-recognizing T cells. These results indicate the existence of a T helper1-T helper2 induction loop. In this scheme, the T helper1 cell carries T15-like receptors and the T helper2 cells, anti-T15-like receptors. Monoclonal antiidiotypic antibodies specific for T15 also induce a T15/167-recognizing T helper cell population. This finding demonstrates that idiotope-specific priming induces non-idiotype-specific T cells. Evidently, the idiotypic T cell network is based on a different selection of idiotope determinants than the selection of the B cell idiotype network.


Sign in / Sign up

Export Citation Format

Share Document