scholarly journals Synthesis of granulocyte colony-stimulating factor and its requirement for terminal divisions in chronic myelogenous leukemia.

1990 ◽  
Vol 171 (5) ◽  
pp. 1785-1790 ◽  
Author(s):  
H Klein ◽  
R Becher ◽  
M Lübbert ◽  
W Oster ◽  
E Schleiermacher ◽  
...  

In this paper we demonstrate that maturing neoplastic cells from patients with chronic myelogenous leukemia (CML) constitutively produce G-CSF and are also receptive for this molecule. G-CSF functions as an autocrine growth factor in stable phase CML, and thus is responsible for divisions of maturing leukemic cells leading to an expansion of the compartment of mature cells. This observation is well in line with in vivo features of CML in stable phase, i.e., the hyperplasia of the mature granulocyte compartment. In acute blastic phase of CML expression of the G-CSF gene seems to be less common and not related to autonomous blast growth.

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 404-411 ◽  
Author(s):  
A Yuo ◽  
S Kitagawa ◽  
T Okabe ◽  
A Urabe ◽  
Y Komatsu ◽  
...  

We examined the in vitro effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) on neutrophil anomalies in 20 patients with myelodysplastic syndromes (MDS) and eight patients with chronic myelogenous leukemia (CML). Neutrophil alkaline phosphatase (NAP) activity was determined in nine MDS patients and eight CML patients by a scoring method. NAP scores were decreased in six of the nine patients with MDS and in all of the patients with CML. In all patients with these diseases, NAP scores increased by incubating the blood with rhG- CSF. An increase in NAP scores by rhG-CSF was observed even at a concentration of 1 U/mL in patients with MDS but was observed only at higher concentrations (1,000 to 10,000 U/mL) in patients with CML. Significant increases in NAP scores occurred at 12 hours' incubation in patients with MDS, whereas the increase was more gradual in patients with CML. This time course difference was thought to be due mainly to the difference in cell populations of circulating myeloid cells between MDS patients and CML patients. Induction of NAP activity by rhG-CSF in patients with both these diseases was suppressed by the addition of inhibitors of RNA or protein synthesis. Neutrophil superoxide anion (O2- ) production induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was determined in the other 11 patients with MDS. This neutrophil function was decreased in seven of the 11 patients with MDS, normal in two patients, and increased in two patients. Preincubation with rhG-CSF caused a significant increase in fMLP-induced O2- production in nine of the 11 patients with MDS. rhG-CSF enhanced this neutrophil function in a time- and dose-dependent manner, and maximal stimulation was observed at 2,000 to 4,000 U/mL of rhG-CSF and at five to ten minutes' incubation. The present results show that rhG-CSF is able to repair at least in part the neutrophil anomalies in these patients, and our data, especially for patients with MDS, suggest the clinical usefulness of rhG-CSF for this preleukemic disorder.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4815-4815
Author(s):  
Haruko Tashiro ◽  
Ryosuke Shirasaki ◽  
Yoko Oka ◽  
Tadashi Yamamoto ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 4815 Background and Aims: We reported that acute myelogenous leukemia blasts and chronic myelogenous leukemia cells converted to stromal myofibroblasts to create an environment for the proliferation of leukemic cells in vitro and also in a non-obese diabetes/ severe combined immunodeficiency (NOD/SCID) murine bone-marrow in vivo. In normal hematopoiesis, hematopoietic stem cell (HSC) and stromal immature mesenchymal stem cell (MSC) are speculated to have a cross-talk, and some reports indicate that the HSC generates MSC, and also a specific fraction of MSC shares similar molecular expressions to that of HSC. We made a hypothesis that HSC might be generated from MSC. To make clear this issue, expression cloning was performed to isolate a molecule that stimulated bone-marrow stromal myofibroblasts to express hematopoietic stem cell marker, CD34. And, we also observed the effect of the isolated molecule to an adult human dermal fibroblast (HDF). Materials and Methods: cDNA-expression library was constructed using PHA-P-stimulated normal human blood lymphocytes, and the prepared plasmids were transfected to COS7 cells. After 3 days of culture, supernatants were added to the normal human bone-marrow-derived myofibroblasts (final 10%), and cells were further cultured for one week. RNA was extracted from the cultured myofibroblasts, and cDNA was synthesized. Positive clones were selected on CD34-expression with reverse transcription-polymerase chain reaction, and a single clone was isolated. The purified protein from the isolated single clone was added to HDF-culture, and the morphological changes and the expression of specific hematopoiesis-related proteins were analyzed. Results and Discussion: Isolated single clone was human interleukin 1β (IL-1β). When the purified IL-1β protein was added to the bone-marrow-derived myofibroblast cultures, cell growth was increased, and up-regulation of the expression of several hematopoietic specific proteins, including cytokine receptors and transcription factor SCL, was observed. Based on these observations, we determined the effect of IL-1β to HDF. When HDFs were cultured with human IL-1β for 3 weeks, the expression of granulocyte colony-stimulating factor (G-CSF)-receptor, and SCL was increased. When these IL-1β-stimulated cells were cultured in a non-coated dish, cells were floating, and budding of the cells was also observed. When HDF were cultured with IL-1β for 3 weeks, and then G-CSF and erythropoietin were added to the cultures, expression of transcription factor GATA-1 and CEBPA was significantly increased after one week. These observations indicate that IL-1β can stimulate to induce HDF toward hematopoietic cells. Now we determine the precise actions of human IL-1β to HDF using NOD/SCID transplantation model in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3786-3792 ◽  
Author(s):  
Frank El Ouriaghli ◽  
Elaine Sloand ◽  
Lori Mainwaring ◽  
Hiroshi Fujiwara ◽  
Keyvan Keyvanfar ◽  
...  

AbstractClinical observations suggest that in chronic myelogenous leukemia (CML), the Philadelphia chromosome (Ph+) clone has a growth advantage over normal hematopoiesis. Patients with CML have high levels of neutrophil elastase, which has recently been shown to antagonize the action of granulocyte-colony-stimulating factor (G-CSF) and other growth factors. We therefore compared the effect of elastase on the growth of normal and CML progenitor cells. In 10-day suspension cultures of normal or CML CD34+ cells supplemented with G-CSF, stem cell factor (SCF), and granulocyte macrophage-colony-stimulating factor (GM-CSF), CML cells had diminished sensitivity to the growth inhibitory effect of elastase. When equal numbers of CML and normal CD34+ cells were cocultured for 10 days, there was no change in the relative proportions of normal and leukemic cells (measured by fluorescence in situ hybridization [FISH] or flow cytometry). However, when elastase was added, CML cells predominated at the end of the culture period (78% vs 22% with 1 μg/mL and 80% vs 20% with 5 μg/mL elastase). CML neutrophils substituted effectively for elastase in suppressing the proliferation of normal CD34+ cells, but this effect was abrogated by serine protease inhibitors. These results suggest that elastase overproduction by the leukemic clone can change the growth environment by digesting growth factors, thereby giving advantage to Ph+ hematopoiesis. (Blood. 2003; 102:3786-3792)


Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2565-2571 ◽  
Author(s):  
A Rambaldi ◽  
M Terao ◽  
S Bettoni ◽  
ML Tini ◽  
R Bassan ◽  
...  

Abstract The levels of leukocyte alkaline phosphatase (LAP) messenger RNA (mRNA) are evaluated in B and T lymphocytes, monocytes, and polymorphonuclear cells (PMNs), and this transcript is found to be present only in PMNs. Precursors of the myelomonocytic pathway, represented by leukemic cells isolated from several cases of chronic myelogenous leukemia (CML) in its stable and blastic phase and acute myelogenous leukemia (AML), are devoid of LAP transcript. These data support the notion that LAP is a marker of the granulocyte terminal differentiation. Despite the absence of LAP mRNA in both the myeloid and the lymphoid precursors, nuclear run-on experiments show constitutive transcription of the LAP gene in leukemic cells obtained from AML, CML, as well as acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia (B-CLL). In CML and in chronic myelo-monocytic leukemia (CMML) PMNs, granulocyte colony- stimulating factor (G-CSF) specifically accumulates LAP mRNA without showing a substantial increase in the rate of transcription of the LAP gene. Once increased by G-CSF, LAP mRNA is very stable, showing a half- life of more than 4 hours in the presence of actinomycin-D. G-CSF is suggested to play a pivotal role in the modulation of LAP transcript in PMNs.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 404-411 ◽  
Author(s):  
A Yuo ◽  
S Kitagawa ◽  
T Okabe ◽  
A Urabe ◽  
Y Komatsu ◽  
...  

Abstract We examined the in vitro effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) on neutrophil anomalies in 20 patients with myelodysplastic syndromes (MDS) and eight patients with chronic myelogenous leukemia (CML). Neutrophil alkaline phosphatase (NAP) activity was determined in nine MDS patients and eight CML patients by a scoring method. NAP scores were decreased in six of the nine patients with MDS and in all of the patients with CML. In all patients with these diseases, NAP scores increased by incubating the blood with rhG- CSF. An increase in NAP scores by rhG-CSF was observed even at a concentration of 1 U/mL in patients with MDS but was observed only at higher concentrations (1,000 to 10,000 U/mL) in patients with CML. Significant increases in NAP scores occurred at 12 hours' incubation in patients with MDS, whereas the increase was more gradual in patients with CML. This time course difference was thought to be due mainly to the difference in cell populations of circulating myeloid cells between MDS patients and CML patients. Induction of NAP activity by rhG-CSF in patients with both these diseases was suppressed by the addition of inhibitors of RNA or protein synthesis. Neutrophil superoxide anion (O2- ) production induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was determined in the other 11 patients with MDS. This neutrophil function was decreased in seven of the 11 patients with MDS, normal in two patients, and increased in two patients. Preincubation with rhG-CSF caused a significant increase in fMLP-induced O2- production in nine of the 11 patients with MDS. rhG-CSF enhanced this neutrophil function in a time- and dose-dependent manner, and maximal stimulation was observed at 2,000 to 4,000 U/mL of rhG-CSF and at five to ten minutes' incubation. The present results show that rhG-CSF is able to repair at least in part the neutrophil anomalies in these patients, and our data, especially for patients with MDS, suggest the clinical usefulness of rhG-CSF for this preleukemic disorder.


Cancer ◽  
2004 ◽  
Vol 100 (12) ◽  
pp. 2592-2597 ◽  
Author(s):  
Alfonso Quintas-Cardama ◽  
Hagop Kantarjian ◽  
Susan O'Brien ◽  
Guillermo Garcia-Manero ◽  
Mary B. Rios ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (12) ◽  
pp. 2565-2571 ◽  
Author(s):  
A Rambaldi ◽  
M Terao ◽  
S Bettoni ◽  
ML Tini ◽  
R Bassan ◽  
...  

The levels of leukocyte alkaline phosphatase (LAP) messenger RNA (mRNA) are evaluated in B and T lymphocytes, monocytes, and polymorphonuclear cells (PMNs), and this transcript is found to be present only in PMNs. Precursors of the myelomonocytic pathway, represented by leukemic cells isolated from several cases of chronic myelogenous leukemia (CML) in its stable and blastic phase and acute myelogenous leukemia (AML), are devoid of LAP transcript. These data support the notion that LAP is a marker of the granulocyte terminal differentiation. Despite the absence of LAP mRNA in both the myeloid and the lymphoid precursors, nuclear run-on experiments show constitutive transcription of the LAP gene in leukemic cells obtained from AML, CML, as well as acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia (B-CLL). In CML and in chronic myelo-monocytic leukemia (CMML) PMNs, granulocyte colony- stimulating factor (G-CSF) specifically accumulates LAP mRNA without showing a substantial increase in the rate of transcription of the LAP gene. Once increased by G-CSF, LAP mRNA is very stable, showing a half- life of more than 4 hours in the presence of actinomycin-D. G-CSF is suggested to play a pivotal role in the modulation of LAP transcript in PMNs.


Sign in / Sign up

Export Citation Format

Share Document