scholarly journals Exogenous peptides compete for the presentation of endogenous antigens to major histocompatibility complex class II-restricted T cells.

1991 ◽  
Vol 174 (4) ◽  
pp. 945-948 ◽  
Author(s):  
L Adorini ◽  
J Moreno ◽  
F Momburg ◽  
G J Hämmerling ◽  
J C Guéry ◽  
...  

Antigen-presenting cells (APC) transfected with a construct encoding the hen egg-white lysozyme (HEL) amino acid sequence 1-80 constitutively present HEL peptides complexed to major histocompatibility complex (MHC) class II molecules to specific T cell hybridomas, indicating that endogenous cellular antigens can be efficiently presented to class II-restricted T cells. Here we show that exogenous peptide competitors added to HEL-transfected APC can inhibit the presentation of endogenous HEL peptides to class II-restricted T cells. The inhibition is specific for the class II molecule binding the competitor peptide, and it affects to the same extent presentation of exogenous or endogenous HEL peptides. These results, demonstrating that an exogenous competitor can inhibit class II-restricted T cell activation induced by endogenous as well as exogenous antigen, suggest lack of strict compartmentalization between endogenous and exogenous pathways of antigen presentation. Since autoreactive T cells may recognize endogenous, as well as exogenous antigens, the results have implications for the treatment of autoimmune diseases by MHC blockade.

1998 ◽  
Vol 188 (9) ◽  
pp. 1633-1640 ◽  
Author(s):  
Abdel Rahim A. Hamad ◽  
Sean M. O'Herrin ◽  
Michael S. Lebowitz ◽  
Ananth Srikrishnan ◽  
Joan Bieler ◽  
...  

The interaction of the T cell receptor (TCR) with its cognate peptide–major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a primary event during T cell activation. Here we used a dimeric IEk-MCC molecule to study its capacity to activate antigen-specific T cells and to directly analyze the role of CD4 in physically stabilizing the TCR–MHC interaction. Dimeric IEk-MCC stably binds to specific T cells. In addition, immobilized dimeric IEk-MCC can induce TCR downregulation and activate antigen-specific T cells more efficiently than anti-CD3. The potency of the dimeric IEk-MCC is significantly enhanced in the presence of CD4. However, CD4 does not play any significant role in stabilizing peptide-MHC–TCR interactions as it fails to enhance binding of IEk-MCC to specific T cells or influence peptide-MHC–TCR dissociation rate or TCR downregulation. Moreover, these results indicate that dimerization of peptide-MHC class II using an IgG molecular scaffold significantly increases its binding avidity leading to an enhancement of its stimulatory capacity while maintaining the physiological properties of cognate peptide–MHC complex. These peptide-MHC–IgG chimeras may, therefore, provide a novel approach to modulate antigen-specific T cell responses both in vitro and in vivo.


1999 ◽  
Vol 189 (6) ◽  
pp. 883-894 ◽  
Author(s):  
Johan K. Sandberg ◽  
Klas Kärre ◽  
Rickard Glas

Triggering of a T cell requires interaction between its specific receptor (TCR) and a peptide antigen presented by a self–major histocompatibility complex (MHC) molecule. TCR recognition of self-MHC by itself falls below the threshold of detection in most systems due to low affinity. To study this interaction, we have used a read-out system in which antigen-specific effector T cells are confronted with targets expressing high levels of MHC compared with the selecting and priming environment. More specifically, the system is based on CD8+ T cells selected in an environment with subnormal levels of MHC class I in the absence of β2-microglobulin. We observe that the MHC restriction element can trigger viral peptide-specific T cells independently of the peptide ligand, provided there is an increase in self-MHC density. Peptide-independent triggering required at least four times the natural in vivo level of MHC expression. Furthermore, recognition of the restriction element at expression levels below this threshold was still enough to compensate for lack of affinity to peptides carrying alanine substitutions in major TCR contact residues. Thus, the specificity in TCR recognition and T cell activation is fine tuned by the avidity for self-MHC, and TCR avidities for peptide and MHC may substitute for each other. These results demonstrate a functional role for TCR avidity for self-MHC in tuning of T cell specificity, and support a role for cross-reactivity on “self” during T cell selection and activation.


1997 ◽  
Vol 186 (5) ◽  
pp. 673-682 ◽  
Author(s):  
Guangming Zhong ◽  
Caetano Reis e Sousa ◽  
Ronald N. Germain

Intravenous (i.v.) injection of high amounts of soluble proteins often results in the induction of antigen-specific tolerance or deviation to helper rather than inflammatory T cell immunity. It has been proposed that this outcome may be due to antigen presentation to T cells by a large cohort of poorly costimulatory or IL-12–deficient resting B cells lacking specific immunoglobulin receptors for the protein. However, previous studies using T cell activation in vitro to assess antigen display have failed to support this idea, showing evidence of specific peptide–major histocompatibility complex (MHC) class II ligand only on purified dendritic cells (DC) or antigen-specific B cells isolated from protein injected mice. Here we reexamine this question using a recently derived monoclonal antibody specific for the T cell receptor (TCR) ligand formed by the association of the 46-61 determinant of hen egg lysozyme (HEL) and the mouse MHC class II molecule I-Ak. In striking contrast to conclusions drawn from indirect T cell activation studies, this direct method of TCR ligand analysis shows that i.v. administration of HEL protein results in nearly all B cells in lymphoid tissues having substantial levels of HEL 46-61–Ak complexes on their surface. DC readily isolated from spleen also display this TCR ligand on their surface. Although the absolute number of displayed ligands is greater on such DC, the relative specific ligand expression compared to total MHC class II levels is similar or greater on B cells. These results demonstrate that in the absence of activating stimuli, both lymphoid DC and antigen-unspecific B cells present to a similar extent class II–associated peptides derived from soluble proteins in extracellular fluid. The numerical advantage of the TCR ligand–bearing B cells may permit them to interact first or more often with naive antigen-specific T cells, contributing to the induction of high-dose T cell tolerance or immune deviation.


1997 ◽  
Vol 186 (8) ◽  
pp. 1223-1232 ◽  
Author(s):  
Thomas Brocker

Thymic T cell development is controlled by T cell receptor (TCR)–major histocompatibility complex (MHC) interactions, whereas a further dependence of peripheral mature T cells on TCR–MHC contact has not been described so far. To study this question, CD4 T cell survival was surveyed in mice lacking MHC class II expression and in mice expressing MHC class II exclusively on dendritic cells. Since neither of these mice positively select CD4 T cells in the thymus, they were grafted with MHC class II–positive embryonic thymic tissue, which had been depleted of bone marrow derived cells. Although the thymus grafts in both hosts were repopulated with host origin thymocytes of identical phenotype and numbers, an accumulation of CD4+ T cells in peripheral lymphoid organs could only be observed in mice expressing MHC class II on dendritic cells, but not in mice that were completely MHC class II deficient. As assessed by histology, the accumulating peripheral CD4 T cells were found to be in close contact with MHC class II+ dendritic cells, suggesting that CD4 T cells need peripheral MHC class II expression for survival and that class II+ dendritic cells might play an important role for the longevity of CD4 T cells.


2001 ◽  
Vol 193 (10) ◽  
pp. 1179-1188 ◽  
Author(s):  
Phillip Wong ◽  
Gregory M. Barton ◽  
Katherine A. Forbush ◽  
Alexander Y. Rudensky

Intrathymic self-peptide–major histocompatibility complex class II (MHC) molecules shape the T cell repertoire through positive and negative selection of immature CD4+CD8+ thymocytes. By analyzing the development of MHC class II–restricted T cell receptor (TCR) transgenic T cells under conditions in which the endogenous peptide repertoire is altered, we show that self-peptide–MHC complexes are also involved in setting T cell activation thresholds. This occurs through changes in the expression level of molecules on thymocytes that influence the sensitivity of TCR signaling. Our results suggest that the endogenous peptide repertoire modulates T cell responsiveness in the thymus in order to enforce tolerance to self-antigens.


1998 ◽  
Vol 187 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Fred Lühder ◽  
Jonathan Katz ◽  
Christophe Benoist ◽  
Diane Mathis

Insulin-dependent diabetes is heavily influenced by genes encoded within the major histocompatibility complex (MHC), positively by some class II alleles and negatively by others. We have explored the mechanism of MHC class II–mediated protection from diabetes using a mouse model carrying the rearranged T cell receptor (TCR) transgenes from a diabetogenic T cell clone derived from a nonobese diabetic mouse. BDC2.5 TCR transgenics with C57Bl/6 background genes and two doses of the H-2g7 allele exhibited strong insulitis at ∼3 wk of age and most developed diabetes a few weeks later. When one of the H-2g7 alleles was replaced by H-2b, insulitis was still severe and only slightly delayed, but diabetes was markedly inhibited in both its penetrance and time of onset. The protective effect was mediated by the Aβb gene, and did not merely reflect haplozygosity of the Aβg7 gene. The only differences we observed in the T cell compartments of g7/g7 and g7/b mice were a decrease in CD4+ cells displaying the transgene-encoded TCR and an increase in cells expressing endogenously encoded TCR α-chains. When the synthesis of endogenously encoded α-chains was prevented, the g7/b animals were no longer protected from diabetes. g7/b mice did not have a general defect in the production of Ag7-restricted T cells, and antigen-presenting cells from g7/b animals were as effective as those from g7/g7 mice in stimulating Ag7-restricted T cell hybridomas. These results argue against mechanisms of protection involving clonal deletion or anergization of diabetogenic T cells, or one depending on capture of potentially pathogenic Ag7-restricted epitopes by Ab molecules. Rather, they support a mechanism based on MHC class II–mediated positive selection of T cells expressing additional specificities.


1994 ◽  
Vol 180 (5) ◽  
pp. 1921-1929 ◽  
Author(s):  
N Labrecque ◽  
J Thibodeau ◽  
W Mourad ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) stimulate a high proportion of T cells expressing specific variable regions of the T cell receptor (TCR) beta chain. Although most alleles and isotypes bind SAGs, polymorphisms of major histocompatibility complex (MHC) class II molecules affect their presentation to T cells. This observation has raised the possibility that a TCR-MHC class II interaction can occur during this recognition process. To address the importance of such interactions during SAG presentation, we have used a panel of murine T cell hybridomas that respond to the bacterial SAG Staphylococcal enterotoxin B (SEB) and to the retroviral SAG Mtv-7 when presented by antigen-presenting cells (APCs) expressing HLA-DR1. Amino acid substitutions of the putative TCR contact residues 59, 64, 66, 77, and 81 on the DR1 beta chain showed that these amino acids are critical for recognition of the SAG SEB by T cells. TCR-MHC class II interactions are thus required for T cell recognition of SAG. Moreover, Mtv-7 SAG recognition by the same T cell hybridomas was not affected by these mutations, suggesting that the topology of the TCR-MHC class II-SAG trimolecular complex could be different from one TCR to another and from one SAG to another.


1999 ◽  
Vol 67 (8) ◽  
pp. 4048-4054 ◽  
Author(s):  
Claire Forestier ◽  
Edgardo Moreno ◽  
Stéphane Méresse ◽  
Armelle Phalipon ◽  
Daniel Olive ◽  
...  

ABSTRACT Lipopolysaccharide (LPS), a major amphiphilic molecule located at the outer membrane of gram-negative bacteria, is a potent antigen known to induce specific humoral immune responses in infected mammals. LPS has been described as a polyclonal activator of B lymphocytes, triggering the secretion of antibodies directed against distinct sugar epitopes of the LPS chain. But, how LPS is handled by B cells remains to be fully understood. This task appears to be essential for a better knowledge of the anti-LPS humoral immune response. In this study, we examine the internalization of LPS and its interaction with antigen-presenting major histocompatibility complex (MHC) class II molecules in murine and human B-cell lines. By use of immunofluorescence, we observe that structurally different LPSs fromBrucella and Shigella strains accumulate in an intracellular compartment enriched in MHC class II molecules. By use of immunoprecipitation, we illustrate that only Brucella abortus LPS associates with MHC class II molecules in a haplotype-independent manner. Taken together, these results raise the possibility that B. abortus LPS may play a role in T-cell activation.


Sign in / Sign up

Export Citation Format

Share Document