scholarly journals Major Histocompatibility Complex Class II Molecules Can Protect from Diabetes by Positively Selecting T Cells with Additional Specificities

1998 ◽  
Vol 187 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Fred Lühder ◽  
Jonathan Katz ◽  
Christophe Benoist ◽  
Diane Mathis

Insulin-dependent diabetes is heavily influenced by genes encoded within the major histocompatibility complex (MHC), positively by some class II alleles and negatively by others. We have explored the mechanism of MHC class II–mediated protection from diabetes using a mouse model carrying the rearranged T cell receptor (TCR) transgenes from a diabetogenic T cell clone derived from a nonobese diabetic mouse. BDC2.5 TCR transgenics with C57Bl/6 background genes and two doses of the H-2g7 allele exhibited strong insulitis at ∼3 wk of age and most developed diabetes a few weeks later. When one of the H-2g7 alleles was replaced by H-2b, insulitis was still severe and only slightly delayed, but diabetes was markedly inhibited in both its penetrance and time of onset. The protective effect was mediated by the Aβb gene, and did not merely reflect haplozygosity of the Aβg7 gene. The only differences we observed in the T cell compartments of g7/g7 and g7/b mice were a decrease in CD4+ cells displaying the transgene-encoded TCR and an increase in cells expressing endogenously encoded TCR α-chains. When the synthesis of endogenously encoded α-chains was prevented, the g7/b animals were no longer protected from diabetes. g7/b mice did not have a general defect in the production of Ag7-restricted T cells, and antigen-presenting cells from g7/b animals were as effective as those from g7/g7 mice in stimulating Ag7-restricted T cell hybridomas. These results argue against mechanisms of protection involving clonal deletion or anergization of diabetogenic T cells, or one depending on capture of potentially pathogenic Ag7-restricted epitopes by Ab molecules. Rather, they support a mechanism based on MHC class II–mediated positive selection of T cells expressing additional specificities.

1997 ◽  
Vol 186 (8) ◽  
pp. 1223-1232 ◽  
Author(s):  
Thomas Brocker

Thymic T cell development is controlled by T cell receptor (TCR)–major histocompatibility complex (MHC) interactions, whereas a further dependence of peripheral mature T cells on TCR–MHC contact has not been described so far. To study this question, CD4 T cell survival was surveyed in mice lacking MHC class II expression and in mice expressing MHC class II exclusively on dendritic cells. Since neither of these mice positively select CD4 T cells in the thymus, they were grafted with MHC class II–positive embryonic thymic tissue, which had been depleted of bone marrow derived cells. Although the thymus grafts in both hosts were repopulated with host origin thymocytes of identical phenotype and numbers, an accumulation of CD4+ T cells in peripheral lymphoid organs could only be observed in mice expressing MHC class II on dendritic cells, but not in mice that were completely MHC class II deficient. As assessed by histology, the accumulating peripheral CD4 T cells were found to be in close contact with MHC class II+ dendritic cells, suggesting that CD4 T cells need peripheral MHC class II expression for survival and that class II+ dendritic cells might play an important role for the longevity of CD4 T cells.


1994 ◽  
Vol 180 (5) ◽  
pp. 1921-1929 ◽  
Author(s):  
N Labrecque ◽  
J Thibodeau ◽  
W Mourad ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) stimulate a high proportion of T cells expressing specific variable regions of the T cell receptor (TCR) beta chain. Although most alleles and isotypes bind SAGs, polymorphisms of major histocompatibility complex (MHC) class II molecules affect their presentation to T cells. This observation has raised the possibility that a TCR-MHC class II interaction can occur during this recognition process. To address the importance of such interactions during SAG presentation, we have used a panel of murine T cell hybridomas that respond to the bacterial SAG Staphylococcal enterotoxin B (SEB) and to the retroviral SAG Mtv-7 when presented by antigen-presenting cells (APCs) expressing HLA-DR1. Amino acid substitutions of the putative TCR contact residues 59, 64, 66, 77, and 81 on the DR1 beta chain showed that these amino acids are critical for recognition of the SAG SEB by T cells. TCR-MHC class II interactions are thus required for T cell recognition of SAG. Moreover, Mtv-7 SAG recognition by the same T cell hybridomas was not affected by these mutations, suggesting that the topology of the TCR-MHC class II-SAG trimolecular complex could be different from one TCR to another and from one SAG to another.


1998 ◽  
Vol 188 (9) ◽  
pp. 1633-1640 ◽  
Author(s):  
Abdel Rahim A. Hamad ◽  
Sean M. O'Herrin ◽  
Michael S. Lebowitz ◽  
Ananth Srikrishnan ◽  
Joan Bieler ◽  
...  

The interaction of the T cell receptor (TCR) with its cognate peptide–major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a primary event during T cell activation. Here we used a dimeric IEk-MCC molecule to study its capacity to activate antigen-specific T cells and to directly analyze the role of CD4 in physically stabilizing the TCR–MHC interaction. Dimeric IEk-MCC stably binds to specific T cells. In addition, immobilized dimeric IEk-MCC can induce TCR downregulation and activate antigen-specific T cells more efficiently than anti-CD3. The potency of the dimeric IEk-MCC is significantly enhanced in the presence of CD4. However, CD4 does not play any significant role in stabilizing peptide-MHC–TCR interactions as it fails to enhance binding of IEk-MCC to specific T cells or influence peptide-MHC–TCR dissociation rate or TCR downregulation. Moreover, these results indicate that dimerization of peptide-MHC class II using an IgG molecular scaffold significantly increases its binding avidity leading to an enhancement of its stimulatory capacity while maintaining the physiological properties of cognate peptide–MHC complex. These peptide-MHC–IgG chimeras may, therefore, provide a novel approach to modulate antigen-specific T cell responses both in vitro and in vivo.


1991 ◽  
Vol 174 (4) ◽  
pp. 945-948 ◽  
Author(s):  
L Adorini ◽  
J Moreno ◽  
F Momburg ◽  
G J Hämmerling ◽  
J C Guéry ◽  
...  

Antigen-presenting cells (APC) transfected with a construct encoding the hen egg-white lysozyme (HEL) amino acid sequence 1-80 constitutively present HEL peptides complexed to major histocompatibility complex (MHC) class II molecules to specific T cell hybridomas, indicating that endogenous cellular antigens can be efficiently presented to class II-restricted T cells. Here we show that exogenous peptide competitors added to HEL-transfected APC can inhibit the presentation of endogenous HEL peptides to class II-restricted T cells. The inhibition is specific for the class II molecule binding the competitor peptide, and it affects to the same extent presentation of exogenous or endogenous HEL peptides. These results, demonstrating that an exogenous competitor can inhibit class II-restricted T cell activation induced by endogenous as well as exogenous antigen, suggest lack of strict compartmentalization between endogenous and exogenous pathways of antigen presentation. Since autoreactive T cells may recognize endogenous, as well as exogenous antigens, the results have implications for the treatment of autoimmune diseases by MHC blockade.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


1996 ◽  
Vol 184 (5) ◽  
pp. 1747-1753 ◽  
Author(s):  
J F Katz ◽  
C Stebbins ◽  
E Appella ◽  
A J Sant

We have studied the consequences of invariant chain (Ii) and DM expression on major histocompatibility complex (MHC) class II function. Ii has a number of discrete functions in the biology of class II, including competitive blocking of peptide binding in the endoplasmic reticulum and enhancing localization in the endocytic compartments. DM is thought to act primarily in endosomes to promote dissociation of the Ii-derived (CLIP) peptide from the class II antigen-binding pocket and subsequent peptide loading. In this study, we have evaluated the functional role of Ii and DM by examining their impact on surface expression of epitopes recognized by a large panel of alloreactive T cells. We find most epitopes studied are influenced by both Ii and DM. Most strikingly, we find that surface expression of a significant fraction of peptide-class II complexes is extinguished, rather than enhanced, by DM expression within the APC. The epitopes antagonized by DM do not appear to be specific for CLIP. Finally, we found that DM was also able to extinguish recognition of a defined peptide derived from the internally synthesized H-2Ld protein. Thus, rather than primarily serving in the removal of CLIP, DM may have a more generalized function of editing the array of peptides that are presented by class II. This editing can be either positive or negative, suggesting that DM plays a specifying role in the display of peptides presented to CD4 T cells.


1995 ◽  
Vol 182 (5) ◽  
pp. 1403-1413 ◽  
Author(s):  
S Morkowski ◽  
A W Goldrath ◽  
S Eastman ◽  
L Ramachandra ◽  
D C Freed ◽  
...  

Peptides from the lumenal portion of invariant chain (Ii) spanning residues 80-106 (class II-associated Ii peptide [CLIP]) are found in association with several mouse and human major histocompatibility complex (MHC) class II allelic variants in wild-type and presentation-deficient mutant cells. The ready detection of these complexes suggests that such an intermediate is essential to the MHC class II processing pathway. In this study, we demonstrate that T cells recognize CLIP/MHC class II complexes on the surface of normal and mutant cells in a manner indistinguishable from that of nominal antigenic peptides. Surprisingly, T cell hybrids specific for human CLIP bound to murine MHC class II molecule I-Ab and a new monoclonal antibody 30-2 with the same specificity, recognize two independent epitopes expressed on this peptide/class II complex. T cell recognition is dependent on a Gln residue (position 100) in CLIP, whereas the 30-2 antibody recognizes a Lys residue-at position 90. These two residues flank the 91-99 sequence that is conserved among human, mouse, and rat Ii, potentially representing an MHC class II-binding site. Our results suggest that the COOH-terminal portion of CLIP that includes TCR contact residue Gln 100 binds in the groove of I-Ab molecule. Moreover, both T cells and the antibody recognize I-Ab complexed with larger Ii processing intermediates such as the approximately 12-kD small leupeptin-induced protein (SLIP) fragments. Thus, SLIP fragments contain a CLIP region bound to MHC class II molecule in a conformation identical to that of a free CLIP peptide. Finally, our data suggest that SLIP/MHC class II complexes are precursors of CLIP/MHC class II complexes.


1995 ◽  
Vol 181 (2) ◽  
pp. 641-648 ◽  
Author(s):  
M A Maldonado ◽  
R A Eisenberg ◽  
E Roper ◽  
P L Cohen ◽  
B L Kotzin

Mice homozygous for the lpr gene have a defect in fas (CD95), a cell surface receptor that belongs to the tumor necrosis factor receptor family and that mediates apoptosis. This genetic abnormality results in lymphoproliferation characterized by the accumulation of CD4-CD8- (double negative [DN]) T cells, autoantibody production, and background strain-dependent, end-organ disease. Our previous results suggested that major histocompatibility complex (MHC) class I may be involved in the development of DN cells. To test this hypothesis, we derived C57BL/6-lpr/lpr (B6/lpr) mice that were deficient for the beta 2-microglobulin gene (beta 2m lpr) and had no detectable class I expression. At 6 mo of age, compared with B6/lpr littermates with normal class I genes, these mice showed greatly reduced lymphadenopathy, mostly due to a dramatic decrease in the number of DN cells. Significant changes in the percentage of other T cell subsets were noted, but only gamma/delta+ T cells showed a marked increase in both percentage and absolute numbers. Analysis of T cell receptor V beta expression of the remaining DN T cells in beta 2m -lpr mice showed a shift to a CD4-like repertoire from a CD8-like repertoire in control B6/lpr mice, indicating that a small MHC class II selected DN population was unmasked in lpr mice lacking class I. We also found that the production of immunoglobulin G (IgG) autoantibodies (antichromatin and anti-single stranded DNA), total IgG and IgG2a, but not total IgM or IgM rheumatoid factor, was significantly reduced in the beta 2m -lpr mice. This work suggests that >90% of DN T cells in lpr mice are derived from the CD8 lineage and are selected on class I. However, a T cell subset selected on class II and T cells expressing gamma/delta are also affected by the lpr defect and become minor components of the aberrant DN population.


1993 ◽  
Vol 178 (2) ◽  
pp. 589-596 ◽  
Author(s):  
T M Laufer ◽  
M G von Herrath ◽  
M J Grusby ◽  
M B Oldstone ◽  
L H Glimcher

Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease marked by hyperglycemia and mononuclear cell infiltration of insulin-producing beta islet cells. Predisposition to IDDM in humans has been linked to the class II major histocompatibility complex (MHC), and islet cells often become aberrantly class II positive during the course of the disease. We have used two recently described transgenic lines to investigate the role of class II molecules and CD4+ T cells in the onset of autoimmune insulitis. Mice that are class II deficient secondary to a targeted disruption of the A beta b gene were bred to mice carrying a transgene for the lymphocytic choriomenigitis virus (LCMV) glycoprotein (GP) targeted to the endocrine pancreas. Our results indicate that class II-deficient animals with and without the GP transgene produce a normal cytotoxic T lymphocyte response to whole LCMV. After infection with LCMV, GP-transgenic class II-deficient animals develop hyperglycemia as rapidly as their class II-positive littermates. Histologic examination of tissue sections from GP-transgenic class II-deficient animals reveals lymphocytic infiltrates of the pancreatic islets that are distinguishable from those of their class II-positive littermates only by the absence of infiltrating CD4+ T cells. These results suggest that in this model of autoimmune diabetes, CD4+ T cells and MHC class II molecules are not required for the development of disease.


1990 ◽  
Vol 172 (5) ◽  
pp. 1341-1346 ◽  
Author(s):  
G Benichou ◽  
P A Takizawa ◽  
P T Ho ◽  
C C Killion ◽  
C A Olson ◽  
...  

Mechanisms involved in self-antigen processing and presentation are crucial in understanding the induction of self-tolerance in the thymus. We examined the immunogenicity of determinants from major histocompatibility complex (MHC) molecules that are expressed in the thymus and have tested peptides derived from the polymorphic regions of class I and class II molecules. We found that two peptides corresponding to NH2 termini of the class II alpha and beta chains (Ak alpha 1-18 and Ak beta 1-16) could bind to self-Ak molecules with high affinity and, surprisingly, were immunogenic in that they could elicit strong proliferative T cell responses in B10.A mice (Ak, Ek). Neonatal injection of peptide Ak beta 1-16 resulted in complete unresponsiveness to this peptide at 8 wk of age showing that these T cells were susceptible to tolerance induction. We have also tested certain class I MHC peptides and showed that some can interact efficiently with class II MHC peptides to induce an autoreactive T cell proliferative response. Among these class I peptides is one (Dd 61-85) that has the capacity to bind to self-Ia without being immunogenic, and therefore represents an MHC determinant that had induced thymic self-tolerance. We conclude that some self-MHC molecules can be processed into peptides that can be presented in the context of intact class II molecules at the surface of antigen-presenting cells. Autoreactive T cells recognizing optimally processed self-peptide/MHC complexes are eliminated during development, whereas other potentially autoreactive T cells escape clonal inactivation or deletion. Incomplete tolerance to self-antigens enriches the T cell repertoire despite the fact that such T cells may eventually become involved in autoimmune disease.


Sign in / Sign up

Export Citation Format

Share Document