scholarly journals Depletion of alpha/beta T cells by a monoclonal antibody against the alpha/beta T cell receptor suppresses established adjuvant arthritis, but not established collagen-induced arthritis in rats.

1992 ◽  
Vol 175 (4) ◽  
pp. 907-915 ◽  
Author(s):  
S Yoshino ◽  
L G Cleland

The effects of treatment with a monoclonal antibody (R73 mAb) against T cell receptor alpha/beta (TCR-alpha/beta) on both established adjuvant arthritis (EAA) and established collagen-induced arthritis (ECIA) in rats have been investigated. Rats were treated with R73 mAb when arthritis reached a peak. Treatment with the anti-TCR-alpha/beta mAb markedly suppressed EAA, whereas ECIA was not affected by the mAb treatment. Histologically, R73 mAb-treated rats with EAA showed mild hyperplasia of synovial tissues, sparse infiltration of inflammatory cells, and minimal erosion of cartilage, whereas arthritic rats treated with PBS and an irrelevant control mAb against Giardia had marked hyperplasia of synovium with pannus, massive inflammatory cell infiltrate, and severe destruction of cartilage and subchondral bone. R73 mAb-treated rats with ECIA exhibited pronounced formation of pannus containing many inflammatory cells and marked cartilage and subchondral damage similar to those in arthritic rats that received the control treatments. Treatment with R73 mAb depleted markedly alpha/beta+ T cells in both peripheral blood and synovial tissues of rats with EAA and ECIA. R73 mAb treatment was associated with marked reduction in arthritogen-specific delayed-type hypersensitivity responses in both EAA and ECIA. The titers of antibodies against type II collagen produced in rats with ECIA were not affected by the mAb. Thus, alpha/beta+ T cells appear to have a central role in EAA, but not in chronic ECIA.

1991 ◽  
Vol 174 (4) ◽  
pp. 891-900 ◽  
Author(s):  
S M Friedman ◽  
M K Crow ◽  
J R Tumang ◽  
M Tumang ◽  
Y Q Xu ◽  
...  

While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM-reactive human T cells, V beta 17. In addition, a V beta 17- MAM-reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease.


1991 ◽  
Vol 174 (2) ◽  
pp. 417-424 ◽  
Author(s):  
T Abo ◽  
T Ohteki ◽  
S Seki ◽  
N Koyamada ◽  
Y Yoshikai ◽  
...  

We demonstrated in the present study that with bacterial stimulation, an increased number of alpha/beta T cells proliferated in the liver of mice and that even T cells bearing self-reactive T cell receptor (TCR) (or forbidden T cell clones), as estimated by anti-V beta monoclonal antibodies in conjunction with immunofluorescence tests, appeared in the liver and, to some extent, in the periphery. The majority (greater than 80%) of forbidden clones induced had double-negative CD4-8-phenotype. In a syngeneic mixed lymphocyte reaction, these T cells appear to be self-reactive. Such forbidden clones and normal T cells in the liver showed a two-peak pattern of TCR expression, which consisted of alpha/beta TCR dull and bright positive cells, as seen in the thymus. A systematic analysis of TCR staining patterns in the various organs was then carried out. T cells from not only the thymus but also the liver had the two-peak pattern of alpha/beta TCR, whereas all of the other peripheral lymphoid organs had a single-peak pattern of TCR. However, T cells in the liver were not comprised of double-positive CD4+8+ cells, which predominantly reside in the thymus. The present results therefore suggest that T cell proliferation in the liver might reflect a major extrathymic pathway for T cell differentiation and that this hepatic pathway has the ability to produce T cells bearing self-reactive TCR under bacterial stimulation, probably due to the lack of a double-positive stage for negative selection.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 631
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Reza Nejati ◽  
Lauren Shaw ◽  
...  

Peripheral T cell lymphomas (PTCLs) are generally chemotherapy resistant and have a poor prognosis. The lack of targeted immunotherapeutic approaches for T cell malignancies results in part from potential risks associated with targeting broadly expressed T cell markers, namely T cell depletion and clinically significant immune compromise. The knowledge that the T cell receptor (TCR) β chain in human α/β TCRs are grouped into Vβ families that can each be targeted by a monoclonal antibody can therefore be exploited for therapeutic purposes. Here, we develop a flexible approach for targeting TCR Vβ families by engineering T cells to express a chimeric CD64 protein that acts as a high affinity immune receptor (IR). We found that CD64 IR-modified T cells can be redirected with precision to T cell targets expressing selected Vβ families by combining CD64 IR-modified T cells with a monoclonal antibody directed toward a specific TCR Vβ family in vitro and in vivo. These findings provide proof of concept that TCR Vβ-family-specific T cell lysis can be achieved using this novel combination cell–antibody platform and illuminates a path toward high precision targeting of T cell malignancies without substantial immune compromise.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Abstract Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


1994 ◽  
Vol 180 (5) ◽  
pp. 1685-1691 ◽  
Author(s):  
F Davodeau ◽  
M A Peyrat ◽  
J Gaschet ◽  
M M Hallet ◽  
F Triebel ◽  
...  

Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire.


1990 ◽  
Vol 20 (12) ◽  
pp. 2805-2808 ◽  
Author(s):  
Shin Yoshino ◽  
Eva Schlipköter ◽  
Raimund Kinne ◽  
Thomas Hünig ◽  
Frank Emmrich

Rheumatology ◽  
1993 ◽  
Vol 32 (1) ◽  
pp. 26-30 ◽  
Author(s):  
K. G. MODER ◽  
H. S. LUTHRA ◽  
M. GRIFFITHS ◽  
C. S. DAVID

1996 ◽  
Vol 183 (3) ◽  
pp. 1277-1282 ◽  
Author(s):  
T Ohteki ◽  
H R MacDonald

The liver of C57BL/6 mice contains a major subset of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells expressing the polymorphic natural killer NK1.1 surface marker. Liver NK1.1+TCR-alpha/beta+ (NK1+ T) cells require interaction with beta2-microglobulin-associated, major histocompatibility complex I-like molecules on hematopoietic cells for their development and have a TCR repertoire that is highly skewed to Vbeta8.2, Vbeta7, and Vbeta2. We show here that congenic C57BL/6.Vbeta(a) mice, which lack Vbeta8- expressing T cells owing to a genomic deletion at the Vbeta locus, maintain normal levels of liver NK1+ T cells owing to a dramatic increase in the proportion of cells expressing Vbeta7 and Vbeta2 (but not other Vbetas). Moreover, in C57BL/6 congenic TCR-V Vbeta3 and -Vbeta8.1 transgenic mice (which in theory should not express other Vbeta, owing to allelic exclusion at the TCR-beta locus), endogenous TCR-Vbeta8.2, Vbeta7, and Vbeta2 (but not other Vbetas) are frequently expressed on liver NK1+T cells but absent on lymph node T cells. Finally, when endogenous V beta expression is prevented in TCR-Vbeta3 and Vbeta8.1 transgenic mice (by introduction of a null allele at the C beta locus), the development of liver NK1+T cells is totally abrogated. Collectively, our data indicate that liver NK1+T cells have a stringent requirement for expression of TCR-Vbeta8.2, Vbeta7, or Vbeta2 for their development.


1994 ◽  
Vol 180 (2) ◽  
pp. 423-432 ◽  
Author(s):  
H Arase ◽  
N Arase ◽  
Y Kobayashi ◽  
Y Nishimura ◽  
S Yonehara ◽  
...  

Recent studies have revealed that 10-20% of CD4+8- or CD4-8- thymocyte populations contain NK1.1+ T cell receptor (TCR)-alpha/beta+ cells. This subpopulation shows characteristics that are different from NK1.1- CD4+ or NK1.1- CD8+ T cells and seems to have developed in a manner different from NK1.1- T cells. Although extensive studies have been performed on the NK1.1+ TCR-alpha/beta+ thymocytes, the physiological role of the NK1.1+ TCR-alpha/beta+ thymocytes has been totally unclear. In the present study, we found that freshly isolated NK1.1+ TCR-alpha/beta+ thymocytes, but neither whole thymocytes nor lymph node T cells, directly killed CD4+8+ thymocytes from normal syngeneic or allogeneic mice by using a long-term cytotoxic assay in which flow cytometry was used to detect the cytotoxicity. However, only weak cytotoxicity was detected against thymocytes from lpr mice on which the Fas antigen that transduces signals for apoptosis into the cells is not expressed. Furthermore, the NK1.1+ TCR-alpha/beta+ thymocytes exhibited high cytotoxicity against T lymphoma targets transfected with fas genes as compared with the parental T lymphoma targets or target cells transfected with mutated fas genes, which lack the function of transducing signals. On the other hand, NK1.1+ effector thymocytes from gld mice that carry a point mutation in Fas ligand did not kill thymocyte targets from normal mice. The present findings, thus, consistently suggest that the NK1.1+ TCR-alpha/beta+ thymocytes kill a subpopulation among CD4+8+ thymocytes via Fas antigen and in this way regulate generation of T lineage cells in the thymus.


Sign in / Sign up

Export Citation Format

Share Document