scholarly journals Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing.

1992 ◽  
Vol 176 (5) ◽  
pp. 1375-1379 ◽  
Author(s):  
L F Brown ◽  
K T Yeo ◽  
B Berse ◽  
T K Yeo ◽  
D R Senger ◽  
...  

Persistent microvascular hyperpermeability to plasma proteins even after the cessation of injury is a characteristic but poorly understood feature of normal wound healing. It results in extravasation of fibrinogen that clots to form fibrin, which serves as a provisional matrix and promotes angiogenesis and scar formation. We present evidence indicating that vascular permeability factor (VPF; also known as vascular endothelial growth factor) may be responsible for the hyperpermeable state, as well as the angiogenesis, that are characteristic of healing wounds. Hyperpermeable blood vessels were identified in healing split-thickness guinea pig and rat punch biopsy skin wounds by their capacity to extravasate circulating macromolecular tracers (colloidal carbon, fluoresceinated dextran). Vascular permeability was maximal at 2-3 d, but persisted as late as 7 d after wounding. Leaky vessels were found initially at the wound edges and later in the subepidermal granulation tissue as keratinocytes migrated to cover the denuded wound surface. Angiogenesis was also prominent within this 7-d interval. In situ hybridization revealed that greatly increased amounts of VPF mRNA were expressed by keratinocytes, initially those at the wound edge, and, at later intervals, keratinocytes that migrated to cover the wound surface; occasional mononuclear cells also expressed VPF mRNA. Secreted VPF was detected by immunofluoroassay of medium from cultured human keratinocytes. These data identify keratinocytes as an important source of VPF gene transcript and protein, correlate VPF expression with persistent vascular hyperpermeability and angiogenesis, and suggest that VPF is an important cytokine in wound healing.

1995 ◽  
Vol 2 (10) ◽  
pp. 683-695 ◽  
Author(s):  
Louis S. Green ◽  
Derek Jellinek ◽  
Carol Bell ◽  
Laurie A. Beebe ◽  
Bruce D. Feistner ◽  
...  

2002 ◽  
Vol 196 (11) ◽  
pp. 1497-1506 ◽  
Author(s):  
Janice A. Nagy ◽  
Eliza Vasile ◽  
Dian Feng ◽  
Christian Sundberg ◽  
Lawrence F. Brown ◽  
...  

Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now report that, in addition to inducing angiogenesis, VEGF-A164 also induces a strong lymphangiogenic response. This finding was unanticipated because lymphangiogenesis has been thought to be mediated by other members of the VPF/VEGF family, namely, VEGF-C and VEGF-D. The new “giant” lymphatics generated by VEGF-A164 were structurally and functionally abnormal: greatly enlarged with incompetent valves, sluggish flow, and delayed lymph clearance. They closely resembled the large lymphatics found in lymphangiomas/lymphatic malformations, perhaps implicating VEGF-A in the pathogenesis of these lesions. Whereas the angiogenic response was maintained only as long as VEGF-A was expressed, giant lymphatics, once formed, became VEGF-A independent and persisted indefinitely, long after VEGF-A expression ceased. These findings raise the possibility that similar, abnormal lymphatics develop in other pathologies in which VEGF-A is overexpressed, e.g., malignant tumors and chronic inflammation.


Sign in / Sign up

Export Citation Format

Share Document