scholarly journals Comparative clonal analysis of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ and CD8+ cytolytic T lymphocytes isolated from seronegative humans immunized with candidate HIV-1 vaccines.

1992 ◽  
Vol 176 (6) ◽  
pp. 1531-1542 ◽  
Author(s):  
S A Hammond ◽  
R C Bollinger ◽  
P E Stanhope ◽  
T C Quinn ◽  
D Schwartz ◽  
...  

The lysis of infected host cells by virus-specific cytolytic T lymphocytes (CTL) is an important factor in host resistance to viral infection. An optimal vaccine against human immunodeficiency virus type 1 (HIV-1) would elicit virus-specific CTL as well as neutralizing antibodies. The induction by a vaccine of HIV-1-specific CD8+ CTL in humans has not been previously reported. In this study, CTL responses were evaluated in HIV-1-seronegative human volunteers participating in a phase I acquired immune deficiency syndrome (AIDS) vaccine trial involving a novel vaccine regimen. Volunteers received an initial immunization with a live recombinant vaccinia virus vector carrying the HIV-1 env gene and a subsequent boost with purified env protein. An exceptionally strong env-specific CTL response was detected in one of two vaccine recipients, while modest but significant env-specific CTL activity was present in the second vaccinee. Cloning of the responding CTL gave both CD4+ and CD8+ env-specific CTL clones, permitting a detailed comparison of critical functional properties of these two types of CTL. In particular, the potential antiviral effects of these CTL were evaluated in an in vitro system involving HIV-1 infection of cultures of normal autologous CD4+ lymphoblasts. At extremely low effector-to-target ratios, vaccine-induced CD8+ CTL clones lysed productively infected cells present within these cultures. When tested for lytic activity against target cells expressing the HIV-1 env gene, CD8+ CTL were 3-10-fold more active on a per cell basis than CD4+ CTL. However, when tested against autologous CD4+ lymphoblasts acutely infected with HIV-1, CD4+ clones lysed a much higher fraction of the target cell population than did CD8+ CTL. CD4+ CTL were shown to recognize not only the infected cells within these acutely infected cultures but also noninfected CD4+ T cells that had passively taken up gp120 shed from infected cells and/or free virions. These results were confirmed in studies in which CD4+ lymphoblasts were exposed to recombinant gp120 and used as targets for gp120-specific CD4+ and CD8+ CTL clones. gp120-pulsed, noninfected targets were lysed in an antigen-specific fashion by CD4+ but not CD8+ CTL clones. Taken together, these observations demonstrate that in an in vitro HIV-1 infection, sufficient amounts of gp120 antigen are produced and shed by infected cells to enable uptake by cells that are not yet infected, resulting in the lysis of these noninfected cells by gp120-specific, CD4+ CTL.(ABSTRACT TRUNCATED AT 400 WORDS)

2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


1994 ◽  
Vol 180 (4) ◽  
pp. 1283-1293 ◽  
Author(s):  
T J Tsomides ◽  
A Aldovini ◽  
R P Johnson ◽  
B D Walker ◽  
R A Young ◽  
...  

We have established long-term cultures of several cell lines stably and uniformly expressing human immunodeficiency virus type 1 (HIV-1) in order to (a) identify naturally processed HIV-1 peptides recognized by cytotoxic T lymphocytes (CTL) from HIV-1-seropositive individuals and (b) consider the hypothesis that naturally occurring epitope densities on HIV-infected cells may limit their lysis by CTL. Each of two A2-restricted CD8+ CTL specific for HIV-1 gag or reverse transcriptase (RT) recognized a single naturally processed HIV-1 peptide in trifluoroacetic acid (TFA) extracts of infected cells: gag 77-85 (SLYNTVATL) or RT 476-484 (ILKEPVHGV). Both processed peptides match the synthetic peptides that are optimally active in cytotoxicity assays and have the consensus motif described for A2-associated peptides. Their abundances were approximately 400 and approximately 12 molecules per infected Jurkat-A2 cell, respectively. Other synthetic HIV-1 peptides active at subnanomolar concentrations were not present in infected cells. Except for the antigen processing mutant line T2, HIV-infected HLA-A2+ cell lines were specifically lysed by both A2-restricted CTL, although infected Jurkat-A2 cells were lysed more poorly by RT-specific CTL than by gag-specific CTL, suggesting that low cell surface density of a natural peptide may limit the effectiveness of some HIV-specific CTL despite their vigorous activity against synthetic peptide-treated target cells.


1999 ◽  
Vol 73 (12) ◽  
pp. 9899-9907 ◽  
Author(s):  
Amanda Brown ◽  
Xia Wang ◽  
Earl Sawai ◽  
Cecilia Cheng-Mayer

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication in both primary T lymphocytes and monocyte-derived macrophages. This enhancement phenotype has been linked to the ability of Nef to modulate the activity of cellular kinases. We find that despite the reported high-affinity interaction between Nef and the Src kinase Hck in vitro, a Nef-Hck interaction in the context of HIV-1-infected primary macrophages is not detectable. However, Nef binding and activation of the PAK-related kinase and phosphorylation of its substrate could be readily detected in both infected primary T lymphocytes and macrophages. Furthermore, we show that this substrate is a complex composed of the recently characterized PAK interacting partner PIX (PAK-interacting guanine nucleotide exchange factor) and its tightly associated p95 protein. PAK and PIX-p95 appear to be differentially activated and phosphorylated depending on the intracellular environment in which nef is expressed. These results identify the PIX-p95 complex as a novel effector of Nef in primary cells and suggest that the regulation of the PAK signaling pathway may differ in T cells and macrophages.


2004 ◽  
Vol 78 (19) ◽  
pp. 10536-10542 ◽  
Author(s):  
Jean-Michel Fondere ◽  
Gael Petitjean ◽  
Marie-France Huguet ◽  
Sharon Lynn Salhi ◽  
Vincent Baillat ◽  
...  

ABSTRACT In resting CD4+ T lymphocytes harboring human immunodeficiency virus type 1 (HIV-1), replication-competent virus persists in patients responding to highly active antiretroviral therapy (HAART). This small latent reservoir represents between 103 and 107 cells per patient. However, the efficiency of HIV-1 DNA-positive resting CD4+ T cells in converting to HIV-1-antigen-secreting cells (HIV-1-Ag-SCs) after in vitro CD4+-T-cell polyclonal stimulation has not been satisfactorily evaluated. By using an HIV-1-antigen enzyme-linked immunospot assay, 8 HIV-1-Ag-SCs per 106 CD4+ resting T cells were quantified in 25 patients with a plasma viral load of <20 copies/ml, whereas 379 were enumerated in 10 viremic patients. In parallel, 369 and 1,238 copies of HIV-1 DNA per 106 CD4+ T cells were enumerated in the two groups of patients, respectively. Only a minority of latently HIV-1 DNA-infected CD4+ T cells could be stimulated in vitro to become HIV-1-Ag-SCs, particularly in aviremic patients. The difference between the number of HIV-1 immunospots in viremic versus aviremic patients could be explained by HIV-1 unintegrated viral DNA that gave additional HIV-1-Ag-SCs after in vitro CD4+-T-cell polyclonal stimulation. The ELISPOT approach to targeting the HIV-1-Ag-SCs could be a useful method for identifying latently HIV-1-infected CD4+ T cells carrying replication-competent HIV-1 in patients responding to HAART.


2003 ◽  
Vol 77 (23) ◽  
pp. 12507-12522 ◽  
Author(s):  
Sébastien Violot ◽  
Saw See Hong ◽  
Dina Rakotobe ◽  
Caroline Petit ◽  
Bernard Gay ◽  
...  

ABSTRACT Human EED, a member of the superfamily of WD-40 repeat proteins and of the Polycomb group proteins, has been identified as a cellular partner of the human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein (R. Peytavi et al., J. Biol. Chem. 274:1635-1645, 1999). In the present study, EED was found to interact with HIV-1 integrase (IN) both in vitro and in vivo in yeast. In vitro, data from mutagenesis studies, pull-down assays, and phage biopanning suggested that EED-binding site(s) are located in the C-terminal domain of IN, between residues 212 and 264. In EED, two putative discrete IN-binding sites were mapped to its N-terminal moiety, at a distance from the MA-binding site, but EED-IN interaction also required the integrity of the EED last two WD repeats. EED showed an apparent positive effect on IN-mediated DNA integration reaction in vitro, in a dose-dependent manner. In situ analysis by immunoelectron microscopy (IEM) of cellular distribution of IN and EED in HIV-1-infected cells (HeLa CD4+ cells or MT4 lymphoid cells) showed that IN and EED colocalized in the nucleus and near nuclear pores, with maximum colocalization events occurring at 6 h postinfection (p.i.). Triple colocalizations of IN, EED, and MA were also observed in the nucleoplasm of infected cells at 6 h p.i., suggesting the ocurrence of multiprotein complexes involving these three proteins at early steps of the HIV-1 virus life cycle. Such IEM patterns were not observed with a noninfectious, envelope deletion mutant of HIV-1.


1996 ◽  
Vol 40 (9) ◽  
pp. 2034-2038 ◽  
Author(s):  
L Tondelli ◽  
F P Colonna ◽  
A Garbesi ◽  
S Zanella ◽  
M E Marongiu ◽  
...  

Among a series of unmodified phosphodiester (PO)-oligodeoxynucleotides (PO-ODNs) complementary to some of the human immunodeficiency virus type 1 (HIV-1) regulatory genes, several PO-ODN sequences complementary to the vpr gene (PO-ODNs-a-vpr, where a-vpr is the antisense vpr sequence) emerged as potent inhibitors (at concentrations of 0.8 to 3.3 microM) of HIV-1 multiplication in de novo infected MT-4 cells, while they showed no cytotoxicity for uninfected cells at concentrations up to 100 microM. Unlike phosphorothioate counterparts, PO-ODN-a-vpr sequences were not inhibitory to HIV-2 multiplication in de novo infected C8166 cells and neither prevented the fusion between chronically infected and bystander CD4+ cells nor inhibited the activity of the HIV-1 reverse transcriptase in enzyme assays. Moreover, they were not inhibitory to HIV-1 multiplication in chronically infected cells. Delayed addition experiments showed that PO-ODNs-a-vpr inhibit an event in the HIV-1 replication cycle following adsorption to the host cell, but preceding reverse transcription. Structure-activity relationship studies indicated that the antiviral activity of the test PO-ODN-a-vpr sequences is not related to an antisense mechanism but to the presence, within the active sequences, of contiguous guanine residues. Physical characterization of the test PO-ODNs suggested that the active structure is a tetramer stabilized by G quartets (i.e., four G residues connected by eight hydrogen bonds).


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1798
Author(s):  
Grant R. Campbell ◽  
Stephen A. Spector

Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.


Sign in / Sign up

Export Citation Format

Share Document