scholarly journals A novel antigen-processing-defective phenotype in major histocompatibility complex class II-positive CIITA transfectants is corrected by interferon-gamma.

1995 ◽  
Vol 182 (6) ◽  
pp. 1793-1799 ◽  
Author(s):  
C A Siegrist ◽  
E Martinez-Soria ◽  
I Kern ◽  
B Mach

Presentation of exogenous protein antigens to T lymphocytes is based on the intersection of two complex pathways: (a) synthesis, assembly, and transport of major histocompatibility complex (MHC) class II-invariant chain complexes from the endoplasmic reticulum to a specialized endosomal compartment, and (b) endocytosis, denaturation, and proteolysis of antigens followed by loading of antigenic peptides onto newly synthesized MHC class II molecules. It is believed that expression of MHC class II heterodimers, invariant chain and human leukocyte antigen-DM is both necessary and sufficient to reconstitute a functional MHC class II loading compartment in antigen-presenting cells. Expression of each of these essential molecules is under the control of the MHC class II transactivator CIITA. Unexpectedly, however, whereas interferon gamma stimulation does confer effective antigen-processing function to nonprofessional antigen presenting cells, such as melanoma cells, expression of the CIITA transactivator alone is not sufficient. Activation of antigen-specific T cells thus requires additional CIITA-independent factor(s), and such factor(s) can be induced by interferon gamma.

1997 ◽  
Vol 186 (4) ◽  
pp. 549-560 ◽  
Author(s):  
José A. Villadangos ◽  
Richard J. Riese ◽  
Christoph Peters ◽  
Harold A. Chapman ◽  
Hidde L. Ploegh

Antigen-presenting cells (APC) degrade endocytosed antigens into peptides that are bound and presented to T cells by major histocompatibility complex (MHC) class II molecules. Class II molecules are delivered to endocytic compartments by the class II accessory molecule invariant chain (Ii), which itself must be eliminated to allow peptide binding. The cellular location of Ii degradation, as well as the enzymology of this event, are important in determining the sets of antigenic peptides that will bind to class II molecules. Here, we show that the cysteine protease cathepsin S acts in a concerted fashion with other cysteine and noncysteine proteases to degrade mouse Ii in a stepwise fashion. Inactivation of cysteine proteases results in incomplete degradation of Ii, but the extent to which peptide loading is blocked by such treatment varies widely among MHC class II allelic products. These observations suggest that, first, class II molecules associated with larger Ii remnants can be converted efficiently to class II–peptide complexes and, second, that most class II–associated peptides can still be generated in cells treated with inhibitors of cysteine proteases. Surprisingly, maturation of MHC class II in mice deficient in cathepsin D is unaffected, showing that this major aspartyl protease is not involved in degradation of Ii or in generation of the bulk of antigenic peptides.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


1993 ◽  
Vol 177 (6) ◽  
pp. 1699-1712 ◽  
Author(s):  
E K Bikoff ◽  
L Y Huang ◽  
V Episkopou ◽  
J van Meerwijk ◽  
R N Germain ◽  
...  

We used gene targeting techniques to produce mice lacking the invariant chain associated with major histocompatibility complex (MHC) class II molecules. Cells from these mice show a dramatic reduction in surface class II, resulting from both defective association of class II alpha and beta chains and markedly decreased post-Golgi transport. The few class II alpha/beta heterodimers reaching the cell surface behave as if empty or occupied by an easily displaced peptide, and display a distinct structure. Mutant spleen cells are defective in their ability to present intact protein antigens, but stimulate enhanced responses in the presence of peptides. These mutant mice have greatly reduced numbers of thymic and peripheral CD4+ T cells. Overall, this striking phenotype establishes that the invariant chain plays a critical role in regulating MHC class II expression and function in the intact animal.


1996 ◽  
Vol 184 (5) ◽  
pp. 1747-1753 ◽  
Author(s):  
J F Katz ◽  
C Stebbins ◽  
E Appella ◽  
A J Sant

We have studied the consequences of invariant chain (Ii) and DM expression on major histocompatibility complex (MHC) class II function. Ii has a number of discrete functions in the biology of class II, including competitive blocking of peptide binding in the endoplasmic reticulum and enhancing localization in the endocytic compartments. DM is thought to act primarily in endosomes to promote dissociation of the Ii-derived (CLIP) peptide from the class II antigen-binding pocket and subsequent peptide loading. In this study, we have evaluated the functional role of Ii and DM by examining their impact on surface expression of epitopes recognized by a large panel of alloreactive T cells. We find most epitopes studied are influenced by both Ii and DM. Most strikingly, we find that surface expression of a significant fraction of peptide-class II complexes is extinguished, rather than enhanced, by DM expression within the APC. The epitopes antagonized by DM do not appear to be specific for CLIP. Finally, we found that DM was also able to extinguish recognition of a defined peptide derived from the internally synthesized H-2Ld protein. Thus, rather than primarily serving in the removal of CLIP, DM may have a more generalized function of editing the array of peptides that are presented by class II. This editing can be either positive or negative, suggesting that DM plays a specifying role in the display of peptides presented to CD4 T cells.


1994 ◽  
Vol 179 (2) ◽  
pp. 681-694 ◽  
Author(s):  
E A Elliott ◽  
J R Drake ◽  
S Amigorena ◽  
J Elsemore ◽  
P Webster ◽  
...  

The major histocompatibility complex (MHC) class II-associated invariant chain (Ii) is thought to act as a chaperone that assists class II during folding, assembly, and transport. To define more precisely the role of Ii chain in regulating class II function, we have investigated in detail the biosynthesis, transport, and intracellular distribution of class II molecules in splenocytes from mice bearing a deletion of the Ii gene. As observed previously, the absence of Ii chain caused significant reduction in both class II-restricted antigen presentation and expression of class II molecules at the cell surface because of the intracellular accumulation of alpha and beta chains. Whereas much of the newly synthesized MHC molecules enter a high molecular weight aggregate characteristic of misfolded proteins, most of the alpha and beta chains form dimers and acquire epitopes characteristic of properly folded complexes. Although the complexes do not bind endogenously processed peptides, class II molecules that reach the surface are competent to bind peptides added to the medium, further demonstrating that at least some of the complexes fold properly. Similar to misfolded proteins, however, the alpha and beta chains are poorly terminally glycosylated, suggesting that they fail to reach the Golgi complex. As demonstrated by double label confocal and electron microscope immunocytochemistry, class II molecules were found in a subcompartment of the endoplasmic reticulum and in a population of small nonlysosomal vesicles possibly corresponding to the intermediate compartment or cis-Golgi network. Thus, although alpha and beta chains can fold and form dimers on their own, the absence of Ii chain causes them to be recognized as "misfolded" and retained in the same compartments as bona fide misfolded proteins.


Sign in / Sign up

Export Citation Format

Share Document