scholarly journals Degradation of Mouse Invariant Chain: Roles of Cathepsins S and D and the Influence of Major Histocompatibility Complex Polymorphism

1997 ◽  
Vol 186 (4) ◽  
pp. 549-560 ◽  
Author(s):  
José A. Villadangos ◽  
Richard J. Riese ◽  
Christoph Peters ◽  
Harold A. Chapman ◽  
Hidde L. Ploegh

Antigen-presenting cells (APC) degrade endocytosed antigens into peptides that are bound and presented to T cells by major histocompatibility complex (MHC) class II molecules. Class II molecules are delivered to endocytic compartments by the class II accessory molecule invariant chain (Ii), which itself must be eliminated to allow peptide binding. The cellular location of Ii degradation, as well as the enzymology of this event, are important in determining the sets of antigenic peptides that will bind to class II molecules. Here, we show that the cysteine protease cathepsin S acts in a concerted fashion with other cysteine and noncysteine proteases to degrade mouse Ii in a stepwise fashion. Inactivation of cysteine proteases results in incomplete degradation of Ii, but the extent to which peptide loading is blocked by such treatment varies widely among MHC class II allelic products. These observations suggest that, first, class II molecules associated with larger Ii remnants can be converted efficiently to class II–peptide complexes and, second, that most class II–associated peptides can still be generated in cells treated with inhibitors of cysteine proteases. Surprisingly, maturation of MHC class II in mice deficient in cathepsin D is unaffected, showing that this major aspartyl protease is not involved in degradation of Ii or in generation of the bulk of antigenic peptides.

1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


2000 ◽  
Vol 191 (7) ◽  
pp. 1177-1186 ◽  
Author(s):  
Guo-Ping Shi ◽  
Rebecca A.R. Bryant ◽  
Richard Riese ◽  
Steven Verhelst ◽  
Christoph Driessen ◽  
...  

The major histocompatibility complex (MHC) class II–associated invariant chain (Ii) regulates intracellular trafficking and peptide loading of MHC class II molecules. Such loading occurs after endosomal degradation of the invariant chain to a ∼3-kD peptide termed CLIP (class II–associated invariant chain peptide). Cathepsins L and S have both been implicated in degradation of Ii to CLIP in thymus and peripheral lymphoid organs, respectively. However, macrophages from mice deficient in both cathepsins S and L can process Ii and load peptides onto MHC class II dimers normally. Both processes are blocked by a cysteine protease inhibitor, indicating the involvement of an additional Ii-processing enzyme(s). Comparison of cysteine proteases expressed by macrophages with those found in splenocytes and dendritic cells revealed two enzymes expressed exclusively in macrophages, cathepsins Z and F. Recombinant cathepsin Z did not generate CLIP from Ii–MHC class II complexes, whereas cathepsin F was as efficient as cathepsin S in CLIP generation. Inhibition of cathepsin F activity and MHC class II peptide loading by macrophages exhibited similar specificity and activity profiles. These experiments show that cathepsin F, in a subset of antigen presenting cells (APCs), can efficiently degrade Ii. Different APCs can thus use distinct proteases to mediate MHC class II maturation and peptide loading.


1995 ◽  
Vol 182 (6) ◽  
pp. 1793-1799 ◽  
Author(s):  
C A Siegrist ◽  
E Martinez-Soria ◽  
I Kern ◽  
B Mach

Presentation of exogenous protein antigens to T lymphocytes is based on the intersection of two complex pathways: (a) synthesis, assembly, and transport of major histocompatibility complex (MHC) class II-invariant chain complexes from the endoplasmic reticulum to a specialized endosomal compartment, and (b) endocytosis, denaturation, and proteolysis of antigens followed by loading of antigenic peptides onto newly synthesized MHC class II molecules. It is believed that expression of MHC class II heterodimers, invariant chain and human leukocyte antigen-DM is both necessary and sufficient to reconstitute a functional MHC class II loading compartment in antigen-presenting cells. Expression of each of these essential molecules is under the control of the MHC class II transactivator CIITA. Unexpectedly, however, whereas interferon gamma stimulation does confer effective antigen-processing function to nonprofessional antigen presenting cells, such as melanoma cells, expression of the CIITA transactivator alone is not sufficient. Activation of antigen-specific T cells thus requires additional CIITA-independent factor(s), and such factor(s) can be induced by interferon gamma.


2008 ◽  
Vol 28 (16) ◽  
pp. 5014-5026 ◽  
Author(s):  
Lei Jin ◽  
Paul M. Waterman ◽  
Karen R. Jonscher ◽  
Cindy M. Short ◽  
Nichole A. Reisdorph ◽  
...  

ABSTRACT Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (∼140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.


1993 ◽  
Vol 177 (6) ◽  
pp. 1699-1712 ◽  
Author(s):  
E K Bikoff ◽  
L Y Huang ◽  
V Episkopou ◽  
J van Meerwijk ◽  
R N Germain ◽  
...  

We used gene targeting techniques to produce mice lacking the invariant chain associated with major histocompatibility complex (MHC) class II molecules. Cells from these mice show a dramatic reduction in surface class II, resulting from both defective association of class II alpha and beta chains and markedly decreased post-Golgi transport. The few class II alpha/beta heterodimers reaching the cell surface behave as if empty or occupied by an easily displaced peptide, and display a distinct structure. Mutant spleen cells are defective in their ability to present intact protein antigens, but stimulate enhanced responses in the presence of peptides. These mutant mice have greatly reduced numbers of thymic and peripheral CD4+ T cells. Overall, this striking phenotype establishes that the invariant chain plays a critical role in regulating MHC class II expression and function in the intact animal.


1996 ◽  
Vol 184 (5) ◽  
pp. 1747-1753 ◽  
Author(s):  
J F Katz ◽  
C Stebbins ◽  
E Appella ◽  
A J Sant

We have studied the consequences of invariant chain (Ii) and DM expression on major histocompatibility complex (MHC) class II function. Ii has a number of discrete functions in the biology of class II, including competitive blocking of peptide binding in the endoplasmic reticulum and enhancing localization in the endocytic compartments. DM is thought to act primarily in endosomes to promote dissociation of the Ii-derived (CLIP) peptide from the class II antigen-binding pocket and subsequent peptide loading. In this study, we have evaluated the functional role of Ii and DM by examining their impact on surface expression of epitopes recognized by a large panel of alloreactive T cells. We find most epitopes studied are influenced by both Ii and DM. Most strikingly, we find that surface expression of a significant fraction of peptide-class II complexes is extinguished, rather than enhanced, by DM expression within the APC. The epitopes antagonized by DM do not appear to be specific for CLIP. Finally, we found that DM was also able to extinguish recognition of a defined peptide derived from the internally synthesized H-2Ld protein. Thus, rather than primarily serving in the removal of CLIP, DM may have a more generalized function of editing the array of peptides that are presented by class II. This editing can be either positive or negative, suggesting that DM plays a specifying role in the display of peptides presented to CD4 T cells.


1997 ◽  
Vol 185 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Guangming Zhong ◽  
Paola Romagnoli ◽  
Ronald N. Germain

Leucine-based signals in the cytoplasmic tail of invariant chain (Ii) control targeting of newly synthesized major histocompatibility complex class II molecules to the endocytic pathway for acquisition of antigenic peptides. Some protein determinants, however, do not require Ii for effective class II presentation, although endocytic processing is still necessary. Here we demonstrate that a dileucine-based signal in the cytoplasmic tail of the class II β chain is critical for this Ii-independent presentation. Elimination or mutation of this signal reduces the rate of re-entry of mature surface class II molecules into the endocytic pathway. Antigen presentation controlled by this signal does not require newly synthesized class II molecules and appears to involve determinants requiring only limited proteolysis for exposure, whereas the opposite is true for Ii-dependent determinants. This demonstrates that related leucine-based trafficking signals in Ii and class II control the functional presentation of protein determinants with distinct processing requirements, suggesting that the peptide binding sites of newly synthesized versus mature class II molecules are made available for antigen binding in distinct endocytic compartments under the control of these homologous cytoplasmic signals. This permits capture of protein fragments produced optimally under distinct conditions of pH and proteolytic activity.


1994 ◽  
Vol 179 (2) ◽  
pp. 681-694 ◽  
Author(s):  
E A Elliott ◽  
J R Drake ◽  
S Amigorena ◽  
J Elsemore ◽  
P Webster ◽  
...  

The major histocompatibility complex (MHC) class II-associated invariant chain (Ii) is thought to act as a chaperone that assists class II during folding, assembly, and transport. To define more precisely the role of Ii chain in regulating class II function, we have investigated in detail the biosynthesis, transport, and intracellular distribution of class II molecules in splenocytes from mice bearing a deletion of the Ii gene. As observed previously, the absence of Ii chain caused significant reduction in both class II-restricted antigen presentation and expression of class II molecules at the cell surface because of the intracellular accumulation of alpha and beta chains. Whereas much of the newly synthesized MHC molecules enter a high molecular weight aggregate characteristic of misfolded proteins, most of the alpha and beta chains form dimers and acquire epitopes characteristic of properly folded complexes. Although the complexes do not bind endogenously processed peptides, class II molecules that reach the surface are competent to bind peptides added to the medium, further demonstrating that at least some of the complexes fold properly. Similar to misfolded proteins, however, the alpha and beta chains are poorly terminally glycosylated, suggesting that they fail to reach the Golgi complex. As demonstrated by double label confocal and electron microscope immunocytochemistry, class II molecules were found in a subcompartment of the endoplasmic reticulum and in a population of small nonlysosomal vesicles possibly corresponding to the intermediate compartment or cis-Golgi network. Thus, although alpha and beta chains can fold and form dimers on their own, the absence of Ii chain causes them to be recognized as "misfolded" and retained in the same compartments as bona fide misfolded proteins.


1997 ◽  
Vol 139 (3) ◽  
pp. 639-649 ◽  
Author(s):  
Monique J. Kleijmeer ◽  
Stanislaw Morkowski ◽  
Janice M. Griffith ◽  
Alexander Y. Rudensky ◽  
Hans J. Geuze

In most human and mouse antigen-presenting cells, the majority of intracellular major histocompatibility complex (MHC) class II molecules resides in late endocytic MHC class II compartments (MIICs), thought to function in antigen processing and peptide loading. However, in mouse A20 B cells, early endocytic class II-containing vesicles (CIIVs) have been reported to contain most of the intracellular MHC class II molecules and have also been implicated in formation of MHC class II–peptide complexes. To address this discrepancy, we have studied in great detail the endocytic pathways of both a human (6H5.DM) and a mouse (A20.Ab) B cell line. Using quantitative immunoelectron microscopy on cryosections of cells that had been pulse–chased with transferrin-HRP or BSA-gold as endocytic tracers, we have identified up to six endocytic subcompartments including an early MIIC type enriched in invariant chain, suggesting that it serves as an important entrance to the endocytic pathway for newly synthesized MHC class II/invariant chain complexes. In addition, early MIICs represented the earliest endocytic compartment containing MHC class II– peptide complexes, as shown by using an antibody against an abundant endogenous class II–peptide complex. The early MIIC exhibited several though not all of the characteristics reported for the CIIV and was situated just downstream of early endosomes. We have not encountered any special class II-containing endocytic structures besides those normally present in nonantigen-presenting cells. Our results therefore suggest that B cells use conventional endocytic compartments rather than having developed a unique compartment to accomplish MHC class II presentation.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Marie Klumplerova ◽  
Petra Splichalova ◽  
Jan Oppelt ◽  
Jan Futas ◽  
Aneta Kohutova ◽  
...  

Abstract Background The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. Results Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at DRB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except DRB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. Conclusions The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.


Sign in / Sign up

Export Citation Format

Share Document