scholarly journals Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions.

1996 ◽  
Vol 183 (4) ◽  
pp. 1553-1559 ◽  
Author(s):  
J Brennan ◽  
G Mahon ◽  
D L Mager ◽  
W A Jefferies ◽  
F Takei

Ly-49 is a family type II transmembrane proteins encoded by a gene cluster on murine chromosome 6. One member of this family, Ly-49A, is expressed by a natural killer (NK) cell subset, binds to class I major histocompatibility complex (MHC) molecules, and blocks the killing of target cells bearing the appropriate H-2 antigens. Here we show that another member of this family which is expressed by an NK cell subset, Ly-49C, recognizes H-2b and H-2d structures which are distinct from and overlapping with those recognized by Ly-49A. Interactions between Ly-49A and C and their class I ligands are entirely blocked by the antibodies 5E6, YE1/48, YE1/32, and A1, all of which were found to recognize epitopes contained within the carbohydrate recognition domain (CRD). However, cell-cell binding assays revealed that class I binding specificity is conferred by a combination of sequences within both the CRD and a 19-amino acid adjacent region. We also investigated the question of whether Ly-49A and C form dimers on cells which express both receptors. When coexpressed on COS cells, sequential immunoprecipitation demonstrated that these receptors pair exclusively as homodimers, with no evidence for heterodimeric structures. These observations provide insight into both the biochemical nature of the Ly-49 family as well as the receptor functions of Ly-49C on NK cells.

1999 ◽  
Vol 189 (3) ◽  
pp. 483-491 ◽  
Author(s):  
Chew Shun Chang ◽  
Laurent Brossay ◽  
Mitchell Kronenberg ◽  
Kevin P. Kane

Classical class I major histocompatibility complex (MHC) molecules, as well as the nonclassical class I histocompatibility leukocyte antigen (HLA)-E molecule, can negatively regulate natural killer (NK) cell cytotoxicity through engagement of NK inhibitory receptors. We show that expression of murine (m)CD1.1, a nonpolymorphic nonclassical MHC class I–like molecule encoded outside the MHC, protects NK-sensitive RMA/S target cells from adherent lymphokine-activated killer cell (A-LAK) cytotoxicity. Passage of effector cells in recombinant interleukin (rIL)-2 enhanced protection by mCD1.1, suggesting an expansion of relevant A-LAK population(s) or modulation of A-LAK receptor expression. Murine CD1.1 conferred protection from lysis by rIL-2–activated spleen cells of recombination activating gene (Rag)-1−/− mice, which lack B and T cells, demonstrating that mCD1.1 can protect RMA/S cells from lysis by NK cells. An antibody specific for mCD1.1 partially restored A-LAK lysis of RMA/S.CD1.1 transfectants, indicating that cell surface mCD1.1 can confer protection from lysis; therefore, mCD1.1 possibly acts through interaction with an NK inhibitory receptor. CD1.1 is by far the most divergent class I molecule capable of regulating NK cell activity. Finally, mCD1.1 expression rendered RMA/S cells resistant to lysis by A-LAK of multiple mouse strains. The conserved structure of mCD1.1 and pattern of mCD1.1 resistance from A-LAK lysis suggest that mCD1.1 may be a ligand for a conserved NK inhibitory receptor.


2010 ◽  
Vol 84 (8) ◽  
pp. 3738-3751 ◽  
Author(s):  
Nathan A. May ◽  
Nicole L. Glosson ◽  
Amy W. Hudson

ABSTRACT Herpesviruses have evolved numerous strategies to evade detection by the immune system. Notably, most of the herpesviruses interfere with viral antigen presentation to cytotoxic T lymphocytes (CTLs) by removing class I major histocompatibility complex (MHC) molecules from the infected cell surface. Clearly, since the herpesviruses have evolved an extensive array of mechanisms to remove class I MHC molecules from the cell surface, this strategy serves them well. However, class I MHC molecules often serve as inhibitory ligands for NK cells, so viral downregulation of all class I MHC molecules should leave the infected cell open to NK cell attack. Some viruses solve this problem by selectively downregulating certain class I MHC products, leaving other class I products at the cell surface to serve as inhibitory NK cell ligands. Here, we show that human herpesvirus 7 (HHV-7) U21 binds to and downregulates all of the human class I MHC gene products, as well as the murine class I molecule H-2Kb. HHV-7-infected cells must therefore possess other means of escaping NK cell detection.


2001 ◽  
Vol 194 (10) ◽  
pp. 1519-1530 ◽  
Author(s):  
Anna Sjöström ◽  
Mikael Eriksson ◽  
Cristina Cerboni ◽  
Maria H. Johansson ◽  
Charles L. Sentman ◽  
...  

Murine natural killer (NK) cells express inhibitory Ly49 receptors specific for major histocompatibility complex (MHC) class I molecules. We report that during interactions with cells in the environment, NK cells acquired MHC class I ligands from surrounding cells in a Ly49-specific fashion and displayed them at the cell surface. Ligand acquisition sometimes reached 20% of the MHC class I expression on surrounding cells, involved transfer of the entire MHC class I protein to the NK cell, and was independent of whether or not the NK cell expressed the MHC class I ligand itself. We also present indirect evidence for spontaneous MHC class I acquisition in vivo, as well as describe an in vitro coculture system with transfected cells in which the same phenomenon occurred. Functional studies in the latter model showed that uptake of H-2Dd by Ly49A+ NK cells was accompanied by a partial inactivation of cytotoxic activity in the NK cell, as tested against H-2Dd-negative target cells. In addition, ligand acquisition did not abrogate the ability of Ly49A+ NK cells to receive inhibitory signals from external H-2Dd molecules. This study is the first to describe ligand acquisition by NK cells, which parallels recently described phenomena in T and B cells.


1994 ◽  
Vol 180 (2) ◽  
pp. 687-692 ◽  
Author(s):  
B F Daniels ◽  
F M Karlhofer ◽  
W E Seaman ◽  
W M Yokoyama

Target cell expression of major histocompatibility complex (MHC) class I molecules correlates with resistance to lysis by natural killer (NK) cells. Prior functional studies of the murine NK cell surface molecule, Ly-49, suggested its role in downregulating NK cell cytotoxicity by specifically interacting with target cell H-2Dd molecules. In support of this hypothesis, we now demonstrate a physical interaction between H-2Dd and Ly-49 in both qualitative and quantitative cell-cell binding assays employing a stable transfected Chinese hamster ovary (CHO) cell line expressing Ly-49 and MHC class I transfected target cells. Binding occurred only when CHO cells expressed Ly-49 at high levels and targets expressed H-2Dd by transfection. Monoclonal antibody blocking experiments confirmed this interaction. These studies indicate that the specificity of natural killing is influenced by NK cell receptors that engage target cell MHC class I molecules.


2000 ◽  
Vol 191 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Reinhard Obst ◽  
Nikolai Netuschil ◽  
Karsten Klopfer ◽  
Stefan Stevanović ◽  
Hans-Georg Rammensee

By analyzing T cell responses against foreign major histocompatibility complex (MHC) molecules loaded with peptide libraries and defined self- and viral peptides, we demonstrate a profound influence of self-MHC molecules on the repertoire of alloreactive T cells: the closer the foreign MHC molecule is related to the T cell's MHC, the higher is the proportion of peptide-specific, alloreactive (“allorestricted”) T cells versus T cells recognizing the foreign MHC molecule without regard to the peptide in the groove. Thus, the peptide repertoire of alloreactive T cells must be influenced by self-MHC molecules during positive or negative thymic selection or peripheral survival, much like the repertoire of the self-restricted T cells. In consequence, allorestricted, peptide-specific T cells (that are of interest for clinical applications) are easier to obtain if T cells and target cells express related MHC molecules.


1998 ◽  
Vol 72 (1) ◽  
pp. 460-466 ◽  
Author(s):  
Tara L. Chapman ◽  
Pamela J. Bjorkman

ABSTRACT Both human and murine cytomegaloviruses (HCMV and MCMV) down-regulate expression of conventional class I major histocompatibility complex (MHC) molecules at the surfaces of infected cells. This allows the infected cells to evade recognition by cytotoxic T cells but leaves them susceptible to natural killer cells, which lyse cells that lack class I molecules. Both HCMV and MCMV encode class I MHC heavy-chain homologs that may function in immune response evasion. We previously showed that a soluble form of the HCMV class I homolog (UL18) expressed in Chinese hamster ovary cells binds the class I MHC light-chain β2-microglobulin and a mixture of endogenous peptides (M. L. Fahnestock, J. L. Johnson, R. M. R. Feldman, J. M. Neveu, W. S. Lane, and P. J. Bjorkman, Immunity 3:583–590, 1995). Consistent with this observation, sequence comparisons suggest that UL18 contains the well-characterized groove that serves as the binding site in MHC molecules for peptides derived from endogenous and foreign proteins. By contrast, the MCMV homolog (m144) contains a substantial deletion within the counterpart of its α2 domain and might not be expected to contain a groove capable of binding peptides. We have now expressed a soluble version of m144 and verified that it forms a heavy chain–β2-microglobulin complex. By contrast to UL18 and classical class I MHC molecules, m144 does not associate with endogenous peptides yet is thermally stable. These results suggest that UL18 and m144 differ structurally and might therefore serve different functions for their respective viruses.


1991 ◽  
Vol 173 (4) ◽  
pp. 833-839 ◽  
Author(s):  
J D Davies ◽  
D H Wilson ◽  
G W Butcher ◽  
D B Wilson

Lymphocytes from parental strain DA rats can induce potent killer cell responses to atypical antigen systems in F1 Lewis (L)/DA and DA/L recipients. Here, we describe an antigen system, H, present on homozygous parental target cells, but not on F1 cells. This antigen system is unusual in several respects: it does not involve class I RT1A gene products usually used by killer cell responses in the rat, it maps to the major histocompatibility complex (MHC) class I-like RT1C region, and it requires homozygous expression of RT1Cav1 alleles. This may be another example, this time involving the RT1C region, of an MHC gene product antigenically altered by an MHC-linked trans-activating modifier gene.


1990 ◽  
Vol 172 (5) ◽  
pp. 1341-1346 ◽  
Author(s):  
G Benichou ◽  
P A Takizawa ◽  
P T Ho ◽  
C C Killion ◽  
C A Olson ◽  
...  

Mechanisms involved in self-antigen processing and presentation are crucial in understanding the induction of self-tolerance in the thymus. We examined the immunogenicity of determinants from major histocompatibility complex (MHC) molecules that are expressed in the thymus and have tested peptides derived from the polymorphic regions of class I and class II molecules. We found that two peptides corresponding to NH2 termini of the class II alpha and beta chains (Ak alpha 1-18 and Ak beta 1-16) could bind to self-Ak molecules with high affinity and, surprisingly, were immunogenic in that they could elicit strong proliferative T cell responses in B10.A mice (Ak, Ek). Neonatal injection of peptide Ak beta 1-16 resulted in complete unresponsiveness to this peptide at 8 wk of age showing that these T cells were susceptible to tolerance induction. We have also tested certain class I MHC peptides and showed that some can interact efficiently with class II MHC peptides to induce an autoreactive T cell proliferative response. Among these class I peptides is one (Dd 61-85) that has the capacity to bind to self-Ia without being immunogenic, and therefore represents an MHC determinant that had induced thymic self-tolerance. We conclude that some self-MHC molecules can be processed into peptides that can be presented in the context of intact class II molecules at the surface of antigen-presenting cells. Autoreactive T cells recognizing optimally processed self-peptide/MHC complexes are eliminated during development, whereas other potentially autoreactive T cells escape clonal inactivation or deletion. Incomplete tolerance to self-antigens enriches the T cell repertoire despite the fact that such T cells may eventually become involved in autoimmune disease.


Sign in / Sign up

Export Citation Format

Share Document