scholarly journals Qualitative and quantitative contributions of the T cell receptor zeta chain to mature T cell apoptosis.

1996 ◽  
Vol 183 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
B Combadière ◽  
M Freedman ◽  
L Chen ◽  
E W Shores ◽  
P Love ◽  
...  

Engagement of the T cell receptor (TCR) of mature T lymphocytes can lead either to activation/proliferation responses or programmed cell death. To understand the molecular regulation of these two fundamentally different outcomes of TCR signaling, we investigated the participation of various components of the TCR-CD3 complex. We found that the TCR-zeta chain, while not absolutely required, was especially effective at promoting mature T cell apoptosis compared with the CD3 epsilon, gamma, or delta chains. We also carried out mutagenesis to address the role of the immunoreceptor tyrosine-based activation motifs (ITAMs) that are the principal signaling components found three times in the TCR-zeta chain and once in each of the CD3 epsilon, gamma, or delta chains. We found that the ability of the TCR-zeta chain to promote apoptosis results both from a quantitative effect of the presence of multiple ITAMs as well as qualitatively different contributions made by individual ITAMs. Apoptosis induced by single chain chimeras revealed that the first zeta ITAM stimulated greater apoptosis than the third zeta ITAM, and the second zeta ITAM was unable to trigger apoptosis. Because microheterogeneity in the amino acid sequence of the various ITAM motifs found in the TCR-zeta and CD3 chains predicts interactions with distinct src-homology-2-domain signaling proteins, our results suggest the possibility that individual ITAM motifs might play unique roles in TCR responses by engaging specific signaling pathways.

2006 ◽  
Vol 203 (11) ◽  
pp. 2509-2518 ◽  
Author(s):  
Shen Dong ◽  
Béatrice Corre ◽  
Eliane Foulon ◽  
Evelyne Dufour ◽  
André Veillette ◽  
...  

Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain–containing inositol polyphosphate 5′-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance.


2002 ◽  
Vol 277 (21) ◽  
pp. 19131-19138 ◽  
Author(s):  
Akhilesh Pandey ◽  
Nieves Ibarrola ◽  
Irina Kratchmarova ◽  
Minerva M. Fernandez ◽  
Stefan N. Constantinescu ◽  
...  

2013 ◽  
Vol 78 (1) ◽  
pp. 17-27 ◽  
Author(s):  
N.-H. Chen ◽  
K. A. Cheong ◽  
C.-H. Kim ◽  
M. Noh ◽  
A.-Y. Lee

2004 ◽  
Vol 279 (39) ◽  
pp. 40647-40652 ◽  
Author(s):  
Michael J. Shapiro ◽  
Penda Powell ◽  
Adanma Ndubuizu ◽  
Chima Nzerem ◽  
Virginia Smith Shapiro

1998 ◽  
Vol 187 (3) ◽  
pp. 349-355 ◽  
Author(s):  
Behazine Combadière ◽  
Caetano Reis e Sousa ◽  
Ronald N. Germain ◽  
Michael J. Lenardo

Activation, anergy, and apoptosis are all possible outcomes of T cell receptor (TCR) engagement. The first leads to proliferation and effector function, whereas the others can lead to partial or complete immunological tolerance. Structural variants of immunizing peptide–major histocompatibility complex molecule ligands that induce selective lymphokine secretion or anergy in mature T cells in association with altered intracellular signaling events have been described. Here we describe altered ligands for mature mouse CD4+ T helper 1 cells that lead to T cell apoptosis by the selective expression of Fas ligand (FasL) and tumor necrosis factor (TNF) without concomitant IL-2, IL-3, or interferon γ production. All ligands that stimulated cell death were found to induce FasL and TNF mRNA expression and TCR aggregation (“capping”) at the cell surface, but did not elicit a common pattern of tyrosine phosphorylation of the TCR-associated signal transduction chains. Thus, TCR ligands that uniquely trigger T cell apoptosis without inducing cytokines that are normally associated with activation can be identified.


Sign in / Sign up

Export Citation Format

Share Document