scholarly journals Interleukin 21 Is a T Helper (Th) Cell 2 Cytokine that Specifically Inhibits the Differentiation of Naive Th Cells into Interferon γ–producing Th1 Cells

2002 ◽  
Vol 196 (7) ◽  
pp. 969-977 ◽  
Author(s):  
Andrea L. Wurster ◽  
Vikki L. Rodgers ◽  
Abhay R. Satoskar ◽  
Matthew J. Whitters ◽  
Deborah A. Young ◽  
...  

The cytokine potential of developing T helper (Th) cells is directly shaped both positively and negatively by the cytokines expressed by the effector Th cell subsets. Here we find that the recently identified cytokine, interleukin (IL)-21, is preferentially expressed by Th2 cells when compared with Th1 cells generated in vitro and in vivo. Exposure of naive Th precursors to IL-21 inhibits interferon (IFN)-γ production from developing Th1 cells. The repression of IFN-γ production is specific in that the expression of other Th1 and Th2 cytokines is unaffected. IL-21 decreases the IL-12 responsiveness of developing Th cells by specifically reducing both signal transducer and activator of transcription 4 protein and mRNA expression. These results suggest that Th2 cell-derived IL-21 regulates the development of IFN-γ–producing Th1 cells which could serve to amplify a Th2 response.

1998 ◽  
Vol 188 (6) ◽  
pp. 1191-1196 ◽  
Author(s):  
Mark H. Kaplan ◽  
Andrea L. Wurster ◽  
Michael J. Grusby

The differentiation of T helper (Th) cells is regulated by members of the signal transducer and activator of transcription (STAT) family of signaling molecules. We have generated mice lacking both Stat4 and Stat6 to examine the ability of Th cells to develop in the absence of these two transcription factors. Stat4, Stat6−/− lymphocytes fail to differentiate into interleukin (IL)-4–secreting Th2 cells. However, in contrast to Stat4−/− lymphocytes, T cells from Stat4, Stat6−/− mice produce significant amounts of interferon (IFN)-γ when activated in vitro. Although Stat4, Stat6−/− lymphocytes produce less IFN-γ than IL-12–stimulated control lymphocytes, equivalent numbers of IFN-γ–secreting cells can be generated from cultures of Stat4, Stat6−/− lymphocytes activated under neutral conditions and control lymphocytes activated under Th1 cell–promoting conditions. Moreover, Stat4, Stat6−/− mice are able to mount an in vivo Th1 cell–mediated delayed-type hypersensitivity response. These results support a model of Th cell differentiation in which the generation of Th2 cells requires Stat6, whereas a Stat4-independent pathway exists for the development of Th1 cells.


2004 ◽  
Vol 199 (4) ◽  
pp. 535-545 ◽  
Author(s):  
Takaaki Sugimoto ◽  
Yuriko Ishikawa ◽  
Tomohiro Yoshimoto ◽  
Nobuki Hayashi ◽  
Jiro Fujimoto ◽  
...  

Interleukin (IL)-18 was originally regarded to induce T helper cell (Th)1-related cytokines. In general, factors favoring interferon (IFN)-γ production are believed to abolish allergic diseases. Thus, we tested the role of IL-18 in regulation of bronchial asthma. To avoid a background response of host-derived T cells, we administered memory type Th1 or Th2 cells into unsensitized mice and examined their role in induction of bronchial asthma. Administration of antigen (Ag) induced both airway inflammation and airway hyperresponsiveness (AHR) in mice receiving memory Th2 cells. In contrast, the same treatment induced only airway inflammation but not AHR in mice receiving memory Th1 cells. However, these mice developed striking AHR when they were coadministered with IL-18. Furthermore, mice having received IFN-γ–expressing Th1 cells sorted from polarized Th1 cells developed severe airway inflammation and AHR after intranasal administration of Ag and IL-18. Thus, Th1 cells become harmful when they are stimulated with Ag and IL-18. Newly polarized Th1 cells and IFN-γ–expressing Th1 cells, both of which express IL-18 receptor α chain strongly, produce IFN-γ, IL-9, IL-13, granulocyte/macrophage colony-stimulating factor, tumor necrosis factor α, regulated on activation, normal T cell expressed and secreted, and macrophage inflammatory protein 1α upon stimulation with Ag, IL-2, and IL-18 in vitro. Thus, Ag and IL-18 stimulate memory Th1 cells to induce severe airway inflammation and AHR in the naive host.


1998 ◽  
Vol 188 (8) ◽  
pp. 1485-1492 ◽  
Author(s):  
Damo Xu ◽  
Woon Ling Chan ◽  
Bernard P. Leung ◽  
David Hunter ◽  
Kerstin Schulz ◽  
...  
Keyword(s):  
T Helper ◽  
Th2 Cell ◽  
A Cell ◽  

Interleukin (IL)-18 induces interferon (IFN)-γ synthesis and synergizes with IL-12 in T helper type 1 (Th1) but not Th2 cell development. We report here that IL-18 receptor (IL-18R) is selectively expressed on murine Th1 but not Th2 cells. IL-18R mRNA was expressed constitutively and consistently in long-term cultured clones, as well as on newly polarized Th1 but not Th2 cells. IL-18 sustained the expression of IL-12Rβ2 mRNA, indicating that IL-18R transmits signals that maintain Th1 development through the IL-12R complex. In turn, IL-12 upregulated IL-18R mRNA. Antibody against an IL-18R–derived peptide bound Th1 but not Th2 clones. It also labeled polarized Th1 but not Th2 cells derived from naive ovalbumin–T cell antigen receptor-αβ transgenic mice (D011.10). Anti–IL-18R antibody inhibited IL-18– induced IFN-γ production by Th1 clones in vitro. In vivo, anti–IL-18R antibody reduced local inflammation and lipopolysaccharide-induced mortality in mice. This was accompanied by shifting the balance from Th1 to Th2 responses, manifest as decreased IFN-γ and proinflammatory cytokine production and increased IL-4 and IL-5 synthesis. Therefore, these data provide a direct mechanism for the selective effect of IL-18 on Th1 but not Th2 cells. They also show that the synergistic effect of IL-12 and IL-18 on Th1 development may be due to the reciprocal upregulation of their receptors. Furthermore, IL-18R is a cell surface marker distinguishing Th1 from Th2 cells and may be a therapeutic target.


2000 ◽  
Vol 192 (7) ◽  
pp. 977-986 ◽  
Author(s):  
Gregory Z. Tau ◽  
Thierry von der Weid ◽  
Binfeng Lu ◽  
Simone Cowan ◽  
Marina Kvatyuk ◽  
...  

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon γ receptor (IFN-γR), whereas Th1 cells do not express the second chain of the IFN-γR (IFN-γR2) and are therefore unresponsive to IFN-γ. To determine whether the regulation of IFN-γR2 expression, and therefore IFN-γ responsiveness, is important for the differentiation of naive CD4+ T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-γR2 is controlled by the CD2 promoter and enhancer. CD4+ T cells from IFN-γR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-γ production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-γR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-γ–unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.


2000 ◽  
Vol 192 (9) ◽  
pp. 1301-1316 ◽  
Author(s):  
Joanne Fanelli Panus ◽  
Louise J. McHeyzer-Williams ◽  
Michael G. McHeyzer-Williams

Distinguishing between the development of functional potential in antigen-specific T helper (Th) cells and the delivery of these specialized functions in vivo has been difficult to resolve. Here, we quantify the frequency of cytokine-producing cells within the primary and memory B10.BR Th cell response to pigeon cytochrome c (PCC). In vitro analysis of acquired functional potential indicated no Th1/Th2 cytokine polarity at the peak of the primary response with surprisingly little evidence for the selective preservation of interleukin (IL)-2, tumor necrosis factor (TNF)-α, IL-4, and interferon (IFN)-γ potentials into the memory compartment. However, the expression of these functional potentials appears tightly regulated in vivo. The staggered appearance of primary response cytokines directly ex vivo contrasts markedly with their rapid coordinate expression in the memory response. Frequencies of IL-2–, TNF-α–, IFN-γ–, and IL-10–expressing memory responders increased over their primary response counterparts, but were still markedly lower than revealed in vitro. IL-4–, IFN-γ–, and IL-10–expressing Th cells remained at low but stable frequencies over the first 6 d of the memory response. Analysis of T cell receptor β chain sequences of IL-4– and TNF-α–expressing PCC-specific Th cells provides evidence for early functional commitment among clonal progeny. These data indicate that the development of functional potential is a consequence of initial antigen experience, but delivery of specialized functions is differentially regulated in primary and memory immune responses.


2004 ◽  
Vol 199 (12) ◽  
pp. 1619-1630 ◽  
Author(s):  
Petr Bocek ◽  
Gilles Foucras ◽  
William E. Paul

Classical studies have demonstrated that in vitro priming of naive CD4 T cells to become T helper (Th)2 cells is strikingly dependent on interleukin (IL)-4, whereas priming for interferon (IFN)γ production is IL-12/IFNγ-dependent. Therefore, it was quite surprising when we noted that priming of naive C57BL/6 CD4+ cells to become IL-4 producers was substantially inhibited by the addition of anti-IFNγ antibodies. This was true using immobilized anti-CD3 and anti-CD28 antibodies or soluble anti-CD3/anti-CD28 and antigen-presenting cells in the presence or absence of added IL-4. Priming of CD4 T cells from IFNγ−/− C57BL/6 mice with immobilized anti-CD3 and anti-CD28 resulted in limited production of IL-4, even with the addition of 1,000 U/ml of IL-4. Titrating IFNγ into such cultures showed a striking increase in the proportion of T cells that secreted IL-4 upon challenge; this effect was completely IL-4–dependent in that it was blocked with anti–IL-4 antibody. Thus, IFNγ plays an unanticipated but substantial role in Th2 priming, although it is an important Th1 cytokine, and under certain circumstances a Th1 inducer.


2004 ◽  
Vol 199 (11) ◽  
pp. 1559-1566 ◽  
Author(s):  
Jude E. Uzonna ◽  
Karen L. Joyce ◽  
Phillip Scott

An unresolved issue in the field of T helper (Th) cell development relates to the findings that low doses of antigen promote Th2 cell development in vitro, whereas several classic in vivo studies suggest the opposite. Here we resolve this paradox by studying the early immune response in mice after infection with different doses of Leishmania major. We found that low parasite doses induced a Th2 response in C57BL/6 (B6) mice, whereas high doses induced a Th1 response. However, the Th2 response in low dose–infected mice was transient and the animals healed. The appearance of a Th1 response after low dose infection was dependent upon the concomitant activation of interferon γ–producing CD8+ T cells. In the absence of CD8+ T cells, the Th2 response was maintained. However, either neutralization of interleukin (IL)-4 or administration of IL-12 promoted a Th1 response after low dose infection of CD8-deficient mice, indicating that the required role for CD8+ T cells was limited to modulation of CD4+ T cell responses. Thus, the discrepant results seen between in vivo and in vitro studies on the effects of antigen dose on Th cell differentiation may depend upon whether CD8+ T cells participate in the immune response.


2003 ◽  
Vol 71 (11) ◽  
pp. 6178-6183 ◽  
Author(s):  
Kerstin Müller ◽  
Susanne Bischof ◽  
Frank Sommer ◽  
Michael Lohoff ◽  
Werner Solbach ◽  
...  

ABSTRACT Due to differential expression of chemokine receptors, the Th1 and Th2 subsets of CD4+ T cells differ in their migratory responses to chemokines. These differences in the migration patterns are likely to play a role in the initiation and regulation of Th1 and Th2 immune responses, inflammatory processes, and T-cell-mediated pathology. In the present study we evaluated the role of activated Th cells as producers of chemokines. Three different sources of murine Th cells were used, i.e., long-term-cultured Th1 and Th2 cell clones, Th1 and Th2 cells differentiated from naïve CD4+ spleen and lymph node cells in vitro, and Th1 and Th2 subsets polarized in vivo using a murine experimental Leishmania major infection model. Following stimulation with anti-CD3, macrophage inflammatory protein 1γ (MIP-1γ) and lymphotactin were produced selectively by Th1 cells but not by Th2 cells. In contrast, only Th2 cells produced MIP-2. The possible biological relevance of these data was substantiated by the finding that in vivo-polarized Th1 cells, but not Th2 cells, produced MIP-1γ and lymphotactin while in vivo-polarized Th2 cells secreted MIP-2. The above data demonstrate that Th1 and Th2 cells differ in their ability to produce chemokines, suggesting that Th1 and Th2 subsets differentially contribute to recruitment of cells into inflammatory foci.


1994 ◽  
Vol 179 (4) ◽  
pp. 1273-1283 ◽  
Author(s):  
R Manetti ◽  
F Gerosa ◽  
M G Giudizi ◽  
R Biagiotti ◽  
P Parronchi ◽  
...  

Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen-specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN-gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.


Parasitology ◽  
2000 ◽  
Vol 120 (6) ◽  
pp. 631-640 ◽  
Author(s):  
R. A. LAWRENCE ◽  
J. E. ALLEN ◽  
C. A. GRAY

Lymphatic filariasis caused by the parasitic nematode, Brugia malayi, is a chronic human disease immunologically characterized by stimulation of Th2 cells and reduced antigen-specific T cell responses. Single stage intra-peritoneal infections with infective larvae (L3) or adult nematodes induce Th2 cells, while the microfilarial stage (Mf) stimulates IFN-γ and Mf-specific IgG1, IgG2a, IgG2b, IgG3 and IgM, but not IgE. To investigate whether IFN-γ is elicited by live Mf in their natural site of infection, mice were infected intravenously. Intravenous infection had a striking effect on the response to Mf and high levels of IgE were induced even in the presence of IFN-γ. Indeed IgE levels to Mf increased markedly with the number of immunizations, higher doses of Mf and prolonged exposure to Mf suggesting that under conditions of chronic antigen exposure, typical of human disease, Mf will stimulate high levels of IgE. The ability of Mf-induced IFN-γ to modulate or regulate a pre-existing Th2 response, was investigated by infecting mice initially with adult male worms to induce a Th2 response, followed 14 days later by infection with Mf. Although Mf stimulated IFN-γ in the presence of male adults, the antibody isotypes elicited did not reflect IFN-γ induction and IgG1and IgE dominated the response. Although it cannot be discounted that IFN-γ induction by Mf may act locally as an inflammatory mediator or modulator of Th2 cells, these data suggest that Mf-stimulated IFN-γ does not have a profound effect overall on progression of the Th2-dominated immune response to filarial infection.


Sign in / Sign up

Export Citation Format

Share Document