scholarly journals Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir

2019 ◽  
Vol 216 (10) ◽  
pp. 2253-2264 ◽  
Author(s):  
Christian Gaebler ◽  
Julio C.C. Lorenzi ◽  
Thiago Y. Oliveira ◽  
Lilian Nogueira ◽  
Victor Ramos ◽  
...  

HIV-1 infection requires lifelong therapy with antiretroviral drugs due to the existence of a latent reservoir of transcriptionally inactive integrated proviruses. The goal of HIV-1 cure research is to eliminate or functionally silence this reservoir. To this end, there are numerous ongoing studies to evaluate immunological approaches, including monoclonal antibody therapies. Evaluating the results of these studies requires sensitive and specific measures of the reservoir. Here, we describe a relatively high-throughput combined quantitative PCR (qPCR) and next-generation sequencing method. Four different qPCR probes covering the packaging signal (PS), group-specific antigen (gag), polymerase (pol), and envelope (env) are combined in a single multiplex reaction to detect the HIV-1 genome in limiting dilution samples followed by sequence verification of individual reactions that are positive for combinations of any two of the four probes (Q4PCR). This sensitive and specific approach allows for an unbiased characterization of the HIV-1 latent reservoir.

2019 ◽  
Author(s):  
Christian Gaebler ◽  
Julio C. C. Lorenzi ◽  
Thiago Y. Oliveira ◽  
Lilian Nogueira ◽  
Victor Ramos ◽  
...  

AbstractHIV-1 infection requires life-long therapy with anti-retroviral drugs due to the existence of a latent reservoir of transcriptionally inactive integrated proviruses. The goal of HIV-1 cure research is to eliminate or functionally silence this reservoir. To this end there are numerous ongoing studies to evaluate immunologic approaches including monoclonal antibody therapies. Evaluating the results of these studies requires sensitive and specific measures of the reservoir. Here we describe a relatively high throughput combined quantitative polymerase chain reaction (qPCR) and next generation sequencing method. Four different qPCR probes covering the packaging signal (PS), group-specific antigen (gag), polymerase (pol), and envelope (env) are combined in a single multiplex reaction to detect the HIV-1 genome in limiting dilution samples followed by sequence verification of individual reactions that are positive for combinations of any 2 of the 4 probes (Q4PCR). This sensitive and specific approach allows for an unbiased characterization of the HIV-1 latent reservoir.SummaryHIV-1 cure research seeks to decrease or eliminate the latent reservoir. The evaluation of such curative strategies requires accurate measures of the reservoir. Gaebler et al. describe a combined multicolor qPCR and next generation sequencing method that enables the sensitive and specific characterization of the HIV-1 latent reservoir.


2018 ◽  
Vol 56 (6) ◽  
Author(s):  
Philip L. Tzou ◽  
Pramila Ariyaratne ◽  
Vici Varghese ◽  
Charlie Lee ◽  
Elian Rakhmanaliev ◽  
...  

ABSTRACTThe ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of anin vitrodiagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.


2012 ◽  
Vol 50 (12) ◽  
pp. 3838-3844 ◽  
Author(s):  
A. Gall ◽  
B. Ferns ◽  
C. Morris ◽  
S. Watson ◽  
M. Cotten ◽  
...  

2012 ◽  
Vol 14 (6) ◽  
pp. 602-612 ◽  
Author(s):  
Maurice Chan ◽  
Shen Mo Ji ◽  
Zhen Xuan Yeo ◽  
Linda Gan ◽  
Eric Yap ◽  
...  

2019 ◽  
Vol 121 ◽  
pp. 104207 ◽  
Author(s):  
Enagnon Kazali Alidjinou ◽  
Pauline Coulon ◽  
Christophe Hallaert ◽  
Olivier Robineau ◽  
Agnès Meybeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document