genotypic resistance
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 89)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Emily F Wissel ◽  
Brooke M Talbot ◽  
Bjorn A Johnson ◽  
Robert A Petit ◽  
Vicki Hertzberg ◽  
...  

The use of shotgun metagenomics for AMR detection is appealing because data can be generated from clinical samples with minimal processing. Detecting antimicrobial resistance (AMR) in clinical genomic data is an important epidemiological task, yet a complex bioinformatic process. Many software tools exist to detect AMR genes, but they have mostly been tested in their detection of genotypic resistance in individual bacterial strains. It is important to understand how well these bioinformatic tools detect AMR genes in shotgun metagenomic data. We developed a software pipeline, hAMRoaster (https://github.com/ewissel/hAMRoaster), for assessing accuracy of prediction of antibiotic resistance phenotypes. For evaluation purposes, we simulated a short read (Illumina) shotgun metagenomics community of eight bacterial pathogens with extensive antibiotic susceptibility testing profiles. We benchmarked nine open source bioinformatics tools for detecting AMR genes that 1) were conda or Docker installable, 2) had been actively maintained, 3) had an open source license, and 4) took FASTA or FASTQ files as input. Several metrics were calculated for each tool including sensitivity, specificity, and F1 at three coverage levels. This study revealed that tools were highly variable in sensitivity (0.25 - 0.99) and specificity (0.2 - 1) in detection of resistance in our synthetic FASTQ files despite similar databases and methods implemented. Tools performed similarly at all coverage levels (5x, 50x, 100x). Cohen’s kappa revealed low agreement across tools.


Author(s):  
Agnieszka Bogut ◽  
Patrycja Mrozik ◽  
Gabriela Czaja ◽  
Malgorzata Stawecka-Hamerla

Abstract The increasing significance of enterococci as healthcare-associated pathogens can be linked to their limited susceptibility to antibiotics. In this study, phenotypic and genotypic resistance profiles of 35 [n=18 E. faecium (Efm); n=17 E. faecalis (Efs)] invasive isolates cultured from hospitalized patients were analysed. Phenotypic identification was verified by the multiplex PCR targeting the 16S rDNA and the ddl genes encoding for the Efs and Efm – specific ligases. Antimicrobial susceptibility was determined using the disc diffusion method and E-tests. The high-level streptomycin resistance (HLSR), high-level gentamicin resistance (HLGR) and glycopeptide resistance was verified by amplification of the ant(6)-Ia, aac(6’)-Ie-aph(2’’)-Ia, as well as vanA and vanB genes, respectively. More than 70% of all isolates were cultured from patients in the Intensive Care and Internal Medicine Units. Blood was the predominant (77%) site of isolation. All Efm isolates were resistant to ampicillin, imipenem, and norfloxacin; 17 isolates demonstrated high-level aminoglycoside resistance (HLAR), including 27.7% with HLSR, 38.8% with HLGR and 27.7% with both phenotypes. HLAR was also common in Efs (HLSR>70%, HLGR>50%), followed by norfloxacin (64.7%) and ampicillin (11.7%) resistance. The ant(6)-Ia and aac(6’)-Ie-aph(2’’)-Ia genes were detected in >90% of the HLSR and HLGR isolates, respectively. Glycopeptide resistance was detected in 4 (22.2%) Efm isolates and mediated by the vanA gene. 19 (54.3%) isolates were multidrug resistant, including 17 (89.5%) Efm. All isolates were susceptible to linezolid. The study constitutes a contribution to the analysis of enterococcal antimicrobial resistance in Polish hospitals. The monitoring of enterococcal prevalence and antimicrobial resistance is crucial to control and prevent infections.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Silje N. Ramstad ◽  
Lin T. Brandal ◽  
Arne M. Taxt ◽  
Yngvild Wasteson ◽  
Jørgen V. Bjørnholt ◽  
...  

Introduction. Shiga toxin-producing Escherichia coli (STEC) can cause severe to fatal disease in humans. Antimicrobial treatment is sometimes necessary, but contraindicated due to undesirable clinical outcome. However, recent studies have shown promising outcomes following antimicrobial treatment. Before the establishment of a possible antimicrobial treatment strategy for STEC infections, the prevalence of antimicrobial resistance in STEC needs to be determined. Gap Statement. The resistance status of Norwegian clinical STEC is not known and should be assessed. Aim. We aim to characterize genotypic antimicrobial resistance determinants in clinical STEC in Norway, and determine the prevalence of genotypic resistance in order to inform possible antimicrobial treatment options for STEC infections. Methodology. We included all clinical STEC submitted to the Norwegian Reference Laboratory from March 2018 to April 2020. All samples were whole-genome sequenced and screened for genotypic antimicrobial resistance,virulence determinants and plasmid incompatibility groups. We performed phylogenetic clustering of STEC by core-genome multi-locus sequence typing, and statistical association analyses between isolate characteristics and genotypic resistance. Results. A total of 459 STEC were analysed. For 385 (83.9 %) STEC we did not identify any antimicrobial resistance determinants. Seventy-four STEC (16.1 %) harboured antimicrobial resistance determinants against one or more antimicrobial classes. The most frequent genotypic resistance was identified against aminoglycosides (10.5 %). Thirty-nine STEC (8.5 %) had a multi-drug resistance (MDR) genotype. Genotypic resistance was more prevalent in non-O157 than O157 STEC (P=0.02). A positive association was seen between genotypic resistance and the low-virulent STEC O117:H7 phylogenetic cluster (no. 14) (P<0.001). Genotypic resistance was not significantly associated to high-virulent STEC. STEC O146:H28 and isolates harbouring the plasmid replicon type IncQ1 were positively associated with MDR. Conclusion. The overall prevalence of genotypic resistance in clinical STEC in Norway is low (16.1 %). Genotypic resistance is more prevalent in non-O157 strains compared to O157 strains, and not significantly associated to high-virulent STEC. Resistance to antimicrobials suggested for treatment, especially azithromycin is low and may present an empiric treatment alternative for severe STEC infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1201
Author(s):  
Alexandria Vingino ◽  
Marilyn C. Roberts ◽  
Michelle Wainstein ◽  
James West ◽  
Stephanie A. Norman ◽  
...  

E. coli was isolated from the Salish Sea (Puget Sound) ecosystem, including samples of marine and fresh water, and wildlife dependent on this environment. E. coli isolates were assessed for phenotypic and genotypic resistance to antibiotics. A total of 305 E. coli isolates was characterized from samples collected from: marine water obtained in four quadrants of the Salish Sea; select locations near beaches; fresh water from streams near marine beaches; and fecal samples from harbor porpoises (Phocoena phocoena), harbor seals (Phoca vitulina), river otters (Lontra canadensis), and English sole (Parophrys vetulus). Isolates were evaluated using antimicrobial susceptibility typing, whole-genome sequencing, fumC, and multilocus sequence typing. Resistance and virulence genes were identified from sequence data. Of the 305 isolates from Salish Sea samples, 20 (6.6%) of the E. coli were intermediate, and 31 (10.2%) were resistant to ≥1 class of antibiotics, with 26.9% of nonsusceptible (resistant and intermediate resistant) E. coli isolates from marine mammals and 70% from river otters. The proportion of nonsusceptible isolates from animals was significantly higher than samples taken from marine water (p < 0.0001). A total of 196 unique STs was identified including 37 extraintestinal pathogenic E. coli (ExPEC)-associated STs [ST10, ST38, ST58, ST69, ST73, ST117, ST131, and ST405]. The study suggests that animals may be potential sentinels for antibiotic-resistant and ExPEC E. coli in the Salish Sea ecosystem.


2021 ◽  
Vol 25 (10) ◽  
pp. 861-863
Author(s):  
S. Tahseen ◽  
F. M. Khanzada ◽  
A. Hussain ◽  
N. Akhtar
Keyword(s):  

2021 ◽  
Author(s):  
Avika Dixit ◽  
Luca Freschi ◽  
Roger Vargas ◽  
Matthias I Groeschel ◽  
Sabira Tahseen ◽  
...  

Background: Global tuberculosis (TB) drug resistance (DR) surveillance is largely focused on the drug rifampicin. We leveraged public and surveillance M. tuberculosis (Mtb) whole genome sequencing (WGS) data, to generate more comprehensive country-level resistance prevalence estimates (antibiograms) using in silico resistance prediction. Methods: We curated and quality-controlled Mtb WGS data. We used a validated random forest model to predict phenotypic resistance to twelve drugs and bias-corrected for model performance, outbreak sampling, and resistance oversampling. We validated our estimates using a national DR survey conducted in South Africa. Results: Mtb isolates from 29 countries (n=19,149) met sequence quality criteria. Marginal genotypic resistance estimates overlapped with the South African DR survey for all drugs except isoniazid and second-line injectables that were underestimated (n=3,134); among multi-drug resistant (MDR) TB, estimates overlapped for pyrazinamide and the fluoroquinolones. Globally, mono-resistance to isoniazid was estimated at 10.9% (95% CI: 10.2-11.7%, n = 14,012. Mono-levofloxacin resistance rates were highest in South Asia (Pakistan 3.4% [0.1-11%], n=111 and India 2.8% [0.08-9.4%], n=114). Rates of resistance discordance between isoniazid and ethionamide were high with 74.4% (IQR: 64.5-79.7%) of isoniazid resistant isolates predicted to be ethionamide susceptible. The global susceptibility rate to pyrazinamide and levofloxacin among MDR was 15.1% (95% CI: 10.2-19.9%, n=3,964). Conclusions: This is the first attempt at global Mtb antibiogram estimation. DR prevalence in Mtb can be reliably estimated using public WGS and phenotypic resistance prediction for key antibiotics. Our results raise concerns about the empiric use of short-course fluoroquinolone regimens for drug susceptible TB in South Asia and suggest that ethionamide is an under-utilized drug in MDR treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fiona V. Franklin-Alming ◽  
Håkon Kaspersen ◽  
Marit A. K. Hetland ◽  
Ragna-Johanne Bakksjø ◽  
Live L. Nesse ◽  
...  

Klebsiella pneumoniae is a well-studied human pathogen for which antimicrobial resistant and hypervirulent clones have emerged globally. K. pneumoniae is also present in a variety of environmental niches, but currently there is a lack of knowledge on the occurrence and characteristics of K. pneumoniae from non-human sources. Certain environmental niches, e.g., animals, may be associated with high K. pneumoniae abundance, and these can constitute a reservoir for further transmission of strains and genetic elements. The aim of this study was to explore and characterize K. pneumoniae from healthy broilers and turkeys. A total of 511 cecal samples (broiler n = 356, turkey n = 155), included in the Norwegian monitoring program for antimicrobial resistance (AMR) in the veterinary sector (NORM-VET) in 2018, were screened for K. pneumoniae by culturing on SCAI agar. K. pneumoniae was detected in 207 (40.5%) samples. Among the broiler samples, 25.8% were positive for K. pneumoniae, in contrast to turkey with 74.2% positive samples (p &lt; 0.01). Antibiotic susceptibility testing was performed, in addition to investigating biofilm production. Whole genome sequencing was performed on 203 K. pneumoniae isolates, and analysis was performed utilizing comparative genomics tools. The genomes grouped into 66 sequence types (STs), with ST35, ST4710 and ST37 being the most prevalent at 13.8%, 7.4%, and 5.4%, respectively. The overall AMR occurrence was low, with only 11.3% of the isolates showing both pheno- and genotypic resistance. Genes encoding aerobactin, salmochelin or yersiniabactin were detected in 47 (23.2%) genomes. Fifteen hypervirulent genomes belonging to ST4710 and isolated from turkey were identified. These all encoded the siderophore virulence loci iuc5 and iro5 on an IncF plasmid. Isolates from both poultry species displayed good biofilm-forming abilities with an average of OD595 0.69 and 0.64. To conclude, the occurrence of K. pneumoniae in turkey was significantly higher than in broiler, indicating that turkey might be an important zoonotic reservoir for K. pneumoniae compared to broilers. Furthermore, our results show a highly diverse K. pneumoniae population in poultry, low levels of antimicrobial resistance, good biofilm-forming abilities and a novel hypervirulent ST4710 clone circulating in the turkey population.


Sign in / Sign up

Export Citation Format

Share Document