scholarly journals Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo

2020 ◽  
Vol 218 (3) ◽  
Author(s):  
Alexandra Schäfer ◽  
Frauke Muecksch ◽  
Julio C.C. Lorenzi ◽  
Sarah R. Leist ◽  
Melissa Cipolla ◽  
...  

SARS-CoV-2, the causative agent of COVID-19, has been responsible for over 42 million infections and 1 million deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here, we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a Syrian hamster model of SARS-CoV-2 and in a mouse-adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). Antibody combinations were effective for prevention and in therapy when administered early. However, in vitro antibody neutralization potency did not uniformly correlate with in vivo protection, and some hu-mAbs were more protective in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors contributes to optimal protection against SARS-CoV-2 MA. The data indicate that intact effector function can affect hu-mAb protective activity and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.

Author(s):  
Alexandra Schäfer ◽  
Frauke Muecksch ◽  
Julio C. C. Lorenzi ◽  
Sarah R. Leist ◽  
Melissa Cipolla ◽  
...  

AbstractSARS-CoV-2, the causative agent of COVID-19, is responsible for over 24 million infections and 800,000 deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a mouse adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). In vitro antibody neutralization potency did not uniformly correlate with in vivo activity, and some hu-mAbs were more potent in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors is essential for optimal protection against SARS-CoV-2 MA. The data indicate that hu-mAb protective activity is dependent on intact effector function and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.


2006 ◽  
Vol 74 (11) ◽  
pp. 6339-6347 ◽  
Author(s):  
Gregory J. Babcock ◽  
Teresa J. Broering ◽  
Hector J. Hernandez ◽  
Robert B. Mandell ◽  
Katherine Donahue ◽  
...  

ABSTRACT Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea, and recent outbreaks of strains with increased virulence underscore the importance of identifying novel approaches to treat and prevent relapse of Clostridium difficile-associated diarrhea (CDAD). CDAD pathology is induced by two exotoxins, toxin A and toxin B, which have been shown to be cytotoxic and, in the case of toxin A, enterotoxic. In this report we describe fully human monoclonal antibodies (HuMAbs) that neutralize these toxins and prevent disease in hamsters. Transgenic mice carrying human immunoglobulin genes were used to isolate HuMAbs that neutralize the cytotoxic effects of either toxin A or toxin B in cell-based in vitro neutralization assays. Three anti-toxin A HuMAbs (3H2, CDA1, and 1B11) could all inhibit the enterotoxicity of toxin A in mouse intestinal loops and the in vivo toxicity in a systemic mouse model. Four anti-toxin B HuMAbs (MDX-1388, 103-174, 1G10, and 2A11) could neutralize cytotoxicity in vitro, although systemic toxicity in the mouse could not be neutralized. Anti-toxin A HuMAb CDA1 and anti-toxin B HuMAb MDX-1388 were tested in the well-established hamster model of C. difficile disease. CDA1 alone resulted in a statistically significant reduction of mortality in hamsters; however, the combination treatment offered enhanced protection. Compared to controls, combination therapy reduced mortality from 100% to 45% (P < 0.0001) in the primary disease hamster model and from 78% to 32% (P < 0.0001) in the less stringent relapse model.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Xuyao Jiao ◽  
Sarah Smith ◽  
Gabrielle Stack ◽  
Qi Liang ◽  
Allan Bradley ◽  
...  

ABSTRACT Typhoid toxin is a virulence factor of Salmonella enterica serovar Typhi, the causative agent of typhoid fever, and is thought to be responsible for the symptoms of severe disease. This toxin has a unique A2B5 architecture with two active subunits, the ADP ribosyl transferase PltA and the DNase CdtB, linked to a pentameric B subunit, which is alternatively made of PltB or PltC. Here, we describe the generation and characterization of typhoid toxin-neutralizing human monoclonal antibodies by immunizing genetically engineered mice that have a full set of human immunoglobulin variable region genes. We identified several monoclonal antibodies with strong in vitro and in vivo toxin-neutralizing activity and different mechanisms of toxin neutralization. These antibodies could serve as the basis for the development of novel therapeutic strategies against typhoid fever.


2021 ◽  
Author(s):  
Ericka Kirkpatrick Roubidoux ◽  
Meagan McMahon ◽  
Juan Manuel Carreno ◽  
Christina Capuano ◽  
Kaijun Jiang ◽  
...  

Influenza virus neuraminidase (NA) targeting antibodies are an independent correlate of protection against infection. Antibodies against the NA act by blocking enzymatic activity, preventing virus release and transmission. As we advance the development of improved influenza virus vaccines that incorporate standard amounts of NA antigen, it is important to identify the antigenic targets of human monoclonal antibodies (mAbs). Additionally, it is important to understand how escape from mAbs changes viral fitness. Here, we describe escape mutants generated by serial passage of A/Netherlands/602/2009 (H1N1) in the presence of human anti-N1 mAbs. We observed escape mutations on the N1 protein around the enzymatic site (S364N, N369T and R430Q) and also detected escape mutations located on the sides and bottom of the NA (N88D, N270D and Q313K/R). We found that a majority of escape mutant viruses had increased fitness in vitro but not in vivo. This work increases our understanding of how human antibody responses target the N1 protein.


2006 ◽  
Vol 80 (6) ◽  
pp. 2654-2664 ◽  
Author(s):  
Rachel Eren ◽  
Dorit Landstein ◽  
Dov Terkieltaub ◽  
Ofer Nussbaum ◽  
Arie Zauberman ◽  
...  

ABSTRACT Passive immunotherapy is potentially effective in preventing reinfection of liver grafts in hepatitis C virus (HCV)-associated liver transplant patients. A combination of monoclonal antibodies directed against different epitopes may be advantageous against a highly mutating virus such as HCV. Two human monoclonal antibodies (HumAbs) against the E2 envelope protein of HCV were developed and tested for the ability to neutralize the virus and prevent human liver infection. These antibodies, designated HCV-AB 68 and HCV-AB 65, recognize different conformational epitopes on E2. They were characterized in vitro biochemically and functionally. Both HumAbs are immunoglobulin G1 and have affinity constants to recombinant E2 constructs in the range of 10−10 M. They are able to immunoprecipitate HCV particles from infected patients' sera from diverse genotypes and to stain HCV-infected human liver tissue. Both antibodies can fix complement and form immune complexes, but they do not activate complement-dependent or antibody-dependent cytotoxicity. Upon complement fixation, the monoclonal antibodies induce phagocytosis of the immune complexes by neutrophils, suggesting that the mechanism of viral clearance includes endocytosis. In vivo, in the HCV-Trimera model, both HumAbs were capable of inhibiting HCV infection of human liver fragments and of reducing the mean viral load in HCV-positive animals. The demonstrated neutralizing activities of HCV-AB 68 and HCV-AB 65 suggest that they have the potential to prevent reinfection in liver transplant patients and to serve as prophylactic treatment in postexposure events.


2011 ◽  
Vol 214 (2) ◽  
pp. 325-330 ◽  
Author(s):  
Michael Fiechter ◽  
Katharina Frey ◽  
Tim Fugmann ◽  
Philipp A. Kaufmann ◽  
Dario Neri

2015 ◽  
Vol 22 (7) ◽  
pp. 711-725 ◽  
Author(s):  
Natalie G. Anosova ◽  
Leah E. Cole ◽  
Lu Li ◽  
Jinrong Zhang ◽  
Anna M. Brown ◽  
...  

ABSTRACTClostridium difficileinfection (CDI) is the principal cause of nosocomial diarrhea and pseudomembranous colitis associated with antibiotic therapy. Recent increases in the number of outbreaks attributed to highly virulent antibiotic-resistant strains underscore the importance of identifying efficacious alternatives to antibiotics to control this infection. CDI is mediated by two large exotoxins, toxins A and B. Strong humoral toxin-specific immune responses are associated with recovery and a lack of disease recurrence, whereas insufficient humoral responses are associated with recurrent CDI. Multiple approaches targeting these toxins, including intravenous immunoglobulin, neutralizing polymers, active vaccines, and, most recently, monoclonal antibodies (MAbs), have been explored, with various degrees of success. In this study, we describe the characterization of the first MAbs isolated from healthy human donors using a high-throughput B-cell cloning strategy. The MAbs were selected based on their ability to inhibit the actions of toxins A and Bin vitroand because of theirin vivoefficacy in a hamster challenge model. A potent 2-MAb cocktail was identified and then further potentiated by the addition of a second anti-toxin B MAb. This 3-MAb combination protected animals against mortality and also reduced the severity and duration of diarrhea associated with challenge with highly virulent strains ofC. difficiletoxinotypes 0 and III. This highly efficacious cocktail consists of one MAb specific to the receptor binding domain of toxin A and two MAbs specific to nonoverlapping regions of the glucosyltransferase domain of toxin B. This MAb combination offers great potential as a nonantibiotic treatment for the prevention of recurrent CDI.


2009 ◽  
Vol 84 (6) ◽  
pp. 3127-3130 ◽  
Author(s):  
Jens C. Krause ◽  
Terrence M. Tumpey ◽  
Chelsey J. Huffman ◽  
Patricia A. McGraw ◽  
Melissa B. Pearce ◽  
...  

ABSTRACT The 2009 pandemic influenza A (H1N1) virus exhibits hemagglutinin protein sequence homology with the 1918 pandemic influenza virus. We found that human monoclonal antibodies recognized the Sa antigenic site on the head domains of both 1918 and 2009 hemagglutinins, a site that is hypervariable due to immune selection. These antibodies exhibited high potency against the 2009 virus in vitro, and one exerted a marked therapeutic effect in vivo.


Sign in / Sign up

Export Citation Format

Share Document