The in vitro and in vivo protective activity of monoclonal antibodies directed against Hantaan virus: potential application for immunotherapy and passive immunization

2002 ◽  
Vol 298 (4) ◽  
pp. 552-558 ◽  
Author(s):  
Zhikai Xu ◽  
Lixin Wei ◽  
Liya Wang ◽  
Haitao Wang ◽  
Shibo Jiang
2009 ◽  
Vol 77 (4) ◽  
pp. 1502-1513 ◽  
Author(s):  
Haijun Tian ◽  
Sarah Weber ◽  
Peter Thorkildson ◽  
Thomas R. Kozel ◽  
Liise-anne Pirofski

ABSTRACT Serotype-specific antibodies to pneumococcal capsular polysaccharide (PPS) are a critical component of vaccine-mediated immunity to Streptococcus pneumoniae. In this study, we investigated the in vitro opsonophagocytic activities of three PPS-specific mouse immunoglobulin G1 monoclonal antibodies (MAbs), 1E2, 5F6, and 7A9, and determined their in vivo efficacies against intranasal challenge with WU2, a serotype 3 pneumococcal strain, in normal and immunodeficient mice. The MAbs had different in vitro activities in a pneumococcal killing assay: 7A9 enhanced killing by mouse neutrophils and J774 cells in the presence of a complement source, whereas 5F6 promoted killing in the absence, but not the presence, of complement, and 1E2 did not promote killing under any conditions. Nonetheless, all three MAbs protected normal and complement component 3-deficient mice from a lethal intranasal challenge with WU2 in passive-immunization experiments in which 10 μg of the MAbs were administered intraperitoneally before intranasal challenge. In contrast, only 1E2 protected Fcγ receptor IIB knockout (FcγRIIB KO) mice and mice that were depleted of neutrophils with the MAb RB6, whereas 7A9 and 5F6 required neutrophils and FcγRIIB to mediate protection. Conversely, 7A9 and 5F6 protected FcγR KO mice, but 1E2 did not. Hence, the efficacy of 1E2 required an activating FcγR(s), whereas 5F6 and 7A9 required the inhibitory FcγR (FcγRIIB). Taken together, our data demonstrate that both MAbs that do and do not promote pneumococcal killing in vitro can mediate protection in vivo, although their efficacies depend on different host receptors and/or components.


Author(s):  
Alexandra Schäfer ◽  
Frauke Muecksch ◽  
Julio C. C. Lorenzi ◽  
Sarah R. Leist ◽  
Melissa Cipolla ◽  
...  

AbstractSARS-CoV-2, the causative agent of COVID-19, is responsible for over 24 million infections and 800,000 deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a mouse adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). In vitro antibody neutralization potency did not uniformly correlate with in vivo activity, and some hu-mAbs were more potent in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors is essential for optimal protection against SARS-CoV-2 MA. The data indicate that hu-mAb protective activity is dependent on intact effector function and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.


2008 ◽  
Vol 76 (7) ◽  
pp. 3321-3328 ◽  
Author(s):  
R. Buissa-Filho ◽  
R. Puccia ◽  
A. F. Marques ◽  
F. A. Pinto ◽  
J. E. Muñoz ◽  
...  

ABSTRACT The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development.


2020 ◽  
Vol 218 (3) ◽  
Author(s):  
Alexandra Schäfer ◽  
Frauke Muecksch ◽  
Julio C.C. Lorenzi ◽  
Sarah R. Leist ◽  
Melissa Cipolla ◽  
...  

SARS-CoV-2, the causative agent of COVID-19, has been responsible for over 42 million infections and 1 million deaths since its emergence in December 2019. There are few therapeutic options and no approved vaccines. Here, we examine the properties of highly potent human monoclonal antibodies (hu-mAbs) in a Syrian hamster model of SARS-CoV-2 and in a mouse-adapted model of SARS-CoV-2 infection (SARS-CoV-2 MA). Antibody combinations were effective for prevention and in therapy when administered early. However, in vitro antibody neutralization potency did not uniformly correlate with in vivo protection, and some hu-mAbs were more protective in combination in vivo. Analysis of antibody Fc regions revealed that binding to activating Fc receptors contributes to optimal protection against SARS-CoV-2 MA. The data indicate that intact effector function can affect hu-mAb protective activity and that in vivo testing is required to establish optimal hu-mAb combinations for COVID-19 prevention.


1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Giuseppe Sautto ◽  
Nicasio Mancini ◽  
Giacomo Gorini ◽  
Massimo Clementi ◽  
Roberto Burioni

More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminaryin vitroandin vivomodels of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.


1990 ◽  
Vol 269 (3) ◽  
pp. 709-715 ◽  
Author(s):  
H Hayashi ◽  
M K Owada ◽  
S Sonobe ◽  
K Domae ◽  
T Yamanouchi ◽  
...  

Lipocortin I, a Ca2(+)-and phospholipid-binding protein without EF-hand structures, has many biological effects in vitro. Its actual role in vivo, however is unknown. We obtained and characterized five monoclonal antibodies to lipocortin I. Two of these monoclonal antibodies (L2 and L4-MAbs) reacted with the Ca(+)-bound form of lipocortin I, but not with the Ca2(+)-free form, both in vivo and in vitro. Lipocortin I required greater than or equal to 10 microM-Ca2+ to bind the two antibodies, and this Ca2+ requirement was not affected by phosphatidylserine. L2-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I and inhibited its binding to Escherichia coli membranes and to phosphatidylserine in vitro. L4-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I, but did not affect its binding to E. coli membranes or to phosphatidylserine. These findings indicated that the inhibition of phospholipase A2 by lipocortin I was not simply due to removal or capping of the substrates in E. coli membranes. Furthermore, an immunofluorescence study using L2-MAb showed the actual existence of Ca2(+)-bound form of lipocortin I in vivo.


Hybridoma ◽  
2000 ◽  
Vol 19 (5) ◽  
pp. 363-367 ◽  
Author(s):  
Steve Holmes ◽  
Julie A. Abrahamson ◽  
Niam Al-Mahdi ◽  
Sherin S. Abdel-Meguid ◽  
Yen Sen Ho

Sign in / Sign up

Export Citation Format

Share Document