scholarly journals Structure of KCNH2 cyclic nucleotide-binding homology domain reveals a functionally vital salt-bridge

2020 ◽  
Vol 152 (4) ◽  
Author(s):  
Ariel Ben-Bassat ◽  
Moshe Giladi ◽  
Yoni Haitin

Human KCNH2 channels (hKCNH2, ether-à-go-go [EAG]–related gene, hERG) are best known for their contribution to cardiac action potential repolarization and have key roles in various pathologies. Like other KCNH family members, hKCNH2 channels contain a unique intracellular complex, consisting of an N-terminal eag domain and a C-terminal cyclic nucleotide-binding homology domain (CNBHD), which is crucial for channel function. Previous studies demonstrated that the CNBHD is occupied by an intrinsic ligand motif, in a self-liganded conformation, providing a structural mechanism for the lack of KCNH channel regulation by cyclic nucleotides. While there have been significant advancements in the structural and functional characterization of the CNBHD of KCNH channels, a high-resolution structure of the hKCNH2 intracellular complex has been missing. Here, we report the 1.5 Å resolution structure of the hKCNH2 channel CNBHD. The structure reveals the canonical fold shared by other KCNH family members, where the spatial organization of the intrinsic ligand is preserved within the β-roll region. Moreover, measurements of small-angle x-ray scattering profile in solution, as well as comparison with a recent NMR analysis of hKCNH2, revealed high agreement with the crystallographic structure, indicating an overall low flexibility in solution. Importantly, we identified a novel salt-bridge (E807-R863) which was not previously resolved in the NMR and cryo-EM structures. Electrophysiological analysis of charge-reversal mutations revealed the bridge’s crucial role in hKCNH2 function. Moreover, comparison with other KCNH members revealed the structural conservation of this salt-bridge, consistent with its functional significance. Together with the available structure of the mouse KCNH1 intracellular complex and previous electrophysiological and spectroscopic studies of KCNH family members, we propose that this salt-bridge serves as a strategically positioned linchpin to support both the spatial organization of the intrinsic ligand and the maintenance of the intracellular complex interface.

2019 ◽  
Author(s):  
Ariel Ben-Bassat ◽  
Moshe Giladi ◽  
Yoni Haitin

AbstractHuman KCNH2 (hKCNH2, Ether-à-go-go (EAG)-Related Gene, hERG) are best known for their role in cardiac action potentials repolarization and have key roles in various pathologies. As other KCNH family members, hKCNH2 contains a unique intracellular complex crucial for channel function, consisting of an N-terminal eag domain and a C-terminal cyclic nucleotide-binding homology domain (CNBHD). Previous studies demonstrated that the CNBHD is occupied by an intrinsic ligand motif (ILM), in a self-liganded conformation, providing a structural mechanism for the lack of KCNH channels regulation by cyclic nucleotides. While significant advancements in structural and functional characterizations of the CNBHD of KCNH channels have been made, a high-resolution structure of the hKCNH2 intracellular complex was missing. Here, we report the 1.5 Å resolution structure of the hKCNH2 channel CNBHD. The structure reveals the canonical fold shared by other KCNH family members, where the spatial organization of the ILM is preserved within the β-roll region. Moreover, measurements of small-angle X-ray scattering profile in solution, as well as comparison with a recent nuclear magnetic resonance (NMR) analysis of hKCNH2, revealed high agreement with the structure, indicating an overall low flexibility in solution. Importantly, we identified a novel salt-bridge (E807-R863), which was not previously resolved in the NMR and cryogenic electron microscopy (cryo-EM) structures. Strikingly, electrophysiological analysis of charge reversal mutations revealed its crucial role for hKCNH2 function. Moreover, comparison with other KCNH members revealed the structural conservation of this salt-bridge, consistent with its functional significance. Together with the available structure of the mouse KCNH1 intracellular complex, and previous electrophysiological and spectroscopic studies of KCNH family members, we propose that this salt-bridge serves as a strategically positioned linchpin to support both the spatial organization of the ILM and the maintenance of the intracellular complex interface.SummaryHuman KCNH2 are key channels governing cardiac repolarization. Here, a 1.5 Å resolution structure of their cyclic nucleotide-binding homology domain is presented. Structural analysis and electrophysiological validation reveal a novel salt-bridge, playing an important role in hKCNH2 functional regulation.


2005 ◽  
Vol 125 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Li Hua ◽  
Sharona E. Gordon

Cyclic nucleotide-gated (CNG) channels are nonselective cation channels that are activated by the direct binding of the cyclic nucleotides cAMP and cGMP. The region linking the last membrane-spanning region (S6) to the cyclic nucleotide binding domain in the COOH terminus, termed the C-linker, has been shown to play an important role in coupling cyclic nucleotide binding to opening of the pore. In this study, we explored the intersubunit proximity between the A' helices of the C-linker regions of CNGA1 in functional channels using site-specific cysteine substitution. We found that intersubunit disulfide bonds can be formed between the A' helices in open channels, and that inducing disulfide bonds in most of the studied constructs resulted in potentiation of channel activation. This suggests that the A' helices of the C-linker regions are in close proximity when the channel is in the open state. Our finding is not compatible with a homology model of the CNGA1 C-linker made from the recently published X-ray crystallographic structure of the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel COOH terminus, and leads us to suggest that the C-linker region depicted in the crystal structure may represent the structure of the closed state. The opening conformational change would then involve a movement of the A' helices from a position parallel to the axis of the membrane to one perpendicular to the axis of the membrane.


2012 ◽  
Vol 423 (1) ◽  
pp. 34-46 ◽  
Author(s):  
Maria J. Marques-Carvalho ◽  
Nirakar Sahoo ◽  
Frederick W. Muskett ◽  
Ricardo S. Vieira-Pires ◽  
Guillaume Gabant ◽  
...  

2016 ◽  
Vol 291 (34) ◽  
pp. 17907-17918 ◽  
Author(s):  
Eva Lörinczi ◽  
Matthew Helliwell ◽  
Alina Finch ◽  
Phillip J. Stansfeld ◽  
Noel W. Davies ◽  
...  

Author(s):  
Christopher Pfleger ◽  
Jana Kusch ◽  
Mahesh Kondapuram ◽  
Tina Schwabe ◽  
Christian Sattler ◽  
...  

2008 ◽  
Vol 381 (3) ◽  
pp. 655-669 ◽  
Author(s):  
Stephen L. Altieri ◽  
Gina M. Clayton ◽  
William R. Silverman ◽  
Adrian O. Olivares ◽  
Enrique M. De La Cruz ◽  
...  

2017 ◽  
Vol 112 (3) ◽  
pp. 335a-336a
Author(s):  
Reinhard Seifert ◽  
Florian Windler ◽  
Wolfgang Bönigk ◽  
Heinz-Gerd Körschen ◽  
U. Benjamin Kaupp

Sign in / Sign up

Export Citation Format

Share Document