scholarly journals Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells.

1979 ◽  
Vol 74 (4) ◽  
pp. 479-494 ◽  
Author(s):  
S Biedert ◽  
W H Barry ◽  
T W Smith

Cultured monolayers of spontaneously contracting chick embryo ventricular cells were perfused with culture medium containing ouabain. Contractile state was monitored by an optical-video system recording amplitude and velocity of cell wall motion. Positive inotropic effects of 2.5 x 10(-7) to 10(-6) M ouabain were manifest within 1.5-2 min, and reached a stable plateau within 5-6 min. The inotropic effect was fully reversed within 5 min after washout of ouabain. Inhibition of uptake of 42K+ (or the K+ analog 86Rb+) and efflux of 24Na+ occurred 1.5-2 min after exposure to ouabain. The degree of inhibition of transport was closely related to the magnitude of the positive inotropic effect throughout the ouabain concentration range 10(-7) to 10(-6) M. After washout of ouabain from monolayers, the monovalent cation active transport rate returned to normal within 1 min. Thus, both the onset and offset of inotropic action of ouabain were closely related temporally to inhibition of the sodium pump. Exposure to ouabain caused significant increases in exchangeable Na and Ca contents that appeared to be developed within 5 min. These data support the hypothesis that inhibition of monovalent cation active transport by ouabain is causally related to the development of positive inotropy and are consistent with modulation of Ca content by intracellular Na+ via the Na+-Ca2+ exchange carrier mechanism.

2004 ◽  
Vol 101 (5) ◽  
pp. 1145-1152 ◽  
Author(s):  
Julien Amour ◽  
Jean-Stéphane David ◽  
Benoît Vivien ◽  
Pierre Coriat ◽  
Bruno Riou

Background Halogenated anesthetics potentiate the positive inotropic effects of alpha- and beta-adrenoceptor stimulations. Although diabetes mellitus induces significant myocardial abnormalities, the interaction of halogenated anesthetics and adrenoceptor stimulation in diabetic myocardium remains unknown. Methods Left ventricular papillary muscles were provided from healthy and streptozotocin-induced diabetic rats. Effects of 1 minimum alveolar concentration halothane, isoflurane, and sevoflurane on the inotropic and lusitropic responses of alpha (phenylephrine)- and beta (isoproterenol)-adrenoceptor stimulations were studied at 29 degrees C with 12 pulses/min. Data shown are mean percentage of baseline active force +/- SD. Results Phenylephrine induced comparable positive inotropic effects in healthy and diabetic rats (143 +/- 8 vs. 136 +/- 18%; not significant), but the potentiation by halogenated anesthetics was abolished in the diabetic rats (121 +/- 20, 130 +/- 20, and 123 +/- 20% for halothane, isoflurane, and sevoflurane, respectively; not significant). In diabetic rats, the positive inotropic effect of isoproterenol was markedly diminished (109 +/- 9 vs. 190 +/- 18%; P < 0.05), but its potentiation was preserved with isoflurane (148 +/- 21%; P < 0.05) and sevoflurane (161 +/- 40%; P < 0.05) but not with halothane (126 +/- 16%; not significant). Halothane induced a deleterious effect on the sarcoplasmic reticulum, as shown by its impairment in the lusitropic effect of isoproterenol, compared with isoflurane and sevoflurane. Conclusion Potentiation of the positive inotropic effect of alpha-adrenoceptor stimulation by halogenated anesthetics is abolished in diabetic rats. In contrast, potentiation of beta-adrenoceptor stimulation is preserved with isoflurane and sevoflurane but not with halothane, probably because of its deleterious effects on sarcoplasmic reticulum.


1988 ◽  
Vol 255 (6) ◽  
pp. H1413-H1420 ◽  
Author(s):  
M. P. Gupta ◽  
I. R. Innes ◽  
N. S. Dhalla

Isolated rat hearts exhibited a biphasic contractile response to varying concentrations of ruthenium red. A negative inotropic effect was observed with concentrations of 0.025–0.5 microM, whereas a reversal of these initial changes toward control or even exceeding the predrug values was obtained as ruthenium red concentration was increased to 2.5 or 5.0 microM. High concentrations (12.5–25.0 microM) of ruthenium red caused a sustained contracture. In contrast, isolated frog hearts exhibited only a sustained negative inotropic effect at 0.25–12.5 microM ruthenium red. In studies with rat heart, both negative and positive inotropic effects of 2.5 microM ruthenium red were blocked either by increasing the concentration of Ca2+ (from 1.25 to 5.0 mM) or by decreasing the concentration of Na+ (from 140 to 35 mM) in the perfusion medium. The contracture induced by 12.5 microM ruthenium red was markedly inhibited when Ca2+ in the medium was lowered. The positive inotropic effect and contracture due to ruthenium red were also blocked by 1 microM of verapamil and 1.5 mM of amiloride; however, these interventions did not prevent the initial negative inotropic effect of ruthenium red. These experiments suggest the role of extracellular Ca2+ in the dose- and time-dependent effects of ruthenium red on contractile function of the rat heart. Furthermore, the positive inotropic response to ruthenium red may be related to its actions on the Na+-dependent Ca2+ movements in the cardiac cell.


1991 ◽  
Vol 69 (4) ◽  
pp. 494-500 ◽  
Author(s):  
Kyosuke Temma ◽  
Hiroshi Kondo ◽  
Tai Akera

Developmental changes in functions of myocardial sodium channels were examined from inotropic effects of several neurotoxins in ventricular muscle preparations obtained from prenatal (20–22 day gestation) or adult (3–4 months old) rat hearts. Tetrodotoxin caused a negative inotropic effect in low concentrations and a loss of muscle responsiveness to electrical stimulation in high concentrations in preparations obtained from either prenatal or adult rat heart. The tetrodotoxin concentration that caused a 50% decrease in developed tension was higher in prenatal rats. Anemonia sulcata toxin, Androctonus australis toxin, veratridine, and Centruroides sculpturatus toxin all produced positive inotropic effects in adult rat heart. The effects were largest with A. sulcata and A. australis toxins, intermediate with veratridine, and smallest with C. sculpturatus toxin. Prenatal heart required higher concentrations of either veratridine, or A. sulcata or A. australis toxins to produce comparable positive inotropic effects. With C. sculpturatus toxin, no significant positive inotropic effect was observed in prenatal heart muscle preparations. These results indicate that cardiac sodium channels undergo significant functional changes during development and that negative and positive inotropic effects of neurotoxins resulting from inhibition and enhancement of fast Na+ channels reflect developmental changes in the cardiac sodium channels.Key words: sodium channels, sodium channel toxins, cardiac inotropic agents.


1999 ◽  
Vol 90 (6) ◽  
pp. 1663-1670. ◽  
Author(s):  
Pierre-Yves Gueugniaud ◽  
Jean-Luc Hanouz ◽  
Jean-Marc Martino ◽  
Yves Lecarpentier ◽  
Pierre Coriat ◽  
...  

Background Halogenated anesthetics potentiate the positive inotropic effects of alpha- and beta-adrenoceptor stimulations, but their interactions with dobutamine remain unknown. Methods The effects of halothane, isoflurane, sevoflurane, and desflurane (1 and 2 minimum alveolar concentration) on the inotropic responses induced by dobutamine (10(-8)-10(-4) M) were studied in rat left ventricular papillary muscles in vitro. Inotropic effects were studied under low (isotony) and high (isometry) loads. The authors also studied the lusitropic effects in isotonic (R1) and isometric (R2) conditions. Data are the mean percentage of baseline +/- SD. Results Dobutamine induced a positive inotropic effect (active isometric force: 185+/-36%, P < 0.001) and a positive lusitropic effect under low load (R1: 78+/-9%, P < 0.001), but not under high load (R2: 95+/-21%, not significant). Halothane, isoflurane, and sevoflurane did not modify the positive inotropic effect of dobutamine. Even in the presence of alpha-adrenoceptor blockade, isoflurane did not potentiate the positive inotropic effect of dobutamine. Desflurane significantly enhanced the positive inotropic effect of dobutamine (active isometric force: 239+/-35%, P < 0.001), but this potentiation was abolished by pretreatment with reserpine. In contrast to halothane, isoflurane, sevoflurane, and desflurane did not significantly modify the lusitropic effects of dobutamine. Conclusions Halogenated anesthetics, except desflurane, did not modify the positive inotropic effects of dobutamine. Desflurane enhanced the positive inotropic effect of dobutamine, but this effect was related to the desflurane-induced release in intramyocardial catecholamine stores.


1997 ◽  
Vol 86 (1) ◽  
pp. 147-159 ◽  
Author(s):  
Jean-Luc Hanouz ◽  
Bruno MD Riou ◽  
Laurent Massias ◽  
Yves Lecarpentier ◽  
Pierre Coriat

Background Halothane induces negative inotropic and lusitropic effects in myocardium. It has been suggested that halothane potentiates beta-adrenoceptor stimulation. However, its effects on the inotropic response to alpha-adrenoceptor stimulation and its effects on the lusitropic effects of alpha- and beta-adrenoceptor stimulation are unknown. Methods The effects of halothane (0.5 and 1 minimum alveolar concentration [MAC]) on the inotropic responses induced by phenylephrine (10(-8) to 10(-4) M) and isoproterenol (10(-8) to 10(-4) M) were studied in rat left ventricular papillary muscles in vitro (in Krebs-Henseleit solution at 29 degrees C, pH 7.40, with 0.5 mM calcium and stimulation frequency at 12 pulses/min). The lusitropic effects were studied in isotonic (R1) and isometric (R2) conditions. Results One MAC halothane induced a negative inotropic effect (54 +/- 3%, P < 0.05), increased R1 (109 +/- 3%, P < 0.05), and decreased R2 (88 +/- 2%, P < 0.05). In control groups, phenylephrine (137 +/- 7%, P > 0.05) and isoproterenol (162 +/- 6%, P < 0.05) induced a positive inotropic effect. Halothane did not significantly modify the positive inotropic effect of calcium, suggesting that it did not modify the inotropic reserve of papillary muscles. In contrast, 1 MAC halothane enhanced the positive inotropic effects of phenylephrine (237 +/- 19%, P < 0.05) and isoproterenol (205 +/- 11%, P < 0.05). Halothane did not modify the lusitropic effect of phenylephrine under high or low load. In contrast, 1 MAC halothane impaired the positive lusitropic effect of isoproterenol under low load (P < 0.05), whereas it did not modify the positive lusitropic effect of isoproterenol under high load. Conclusions At clinically relevant concentrations, halothane potentiated the positive inotropic effects of both alpha- and beta-adrenoceptor stimulation. Furthermore, halothane alters the positive lusitropic-effect of beta-adrenoceptor stimulation under low load.


1989 ◽  
Vol 257 (4) ◽  
pp. H1082-H1087 ◽  
Author(s):  
D. F. Rigel ◽  
I. L. Grupp ◽  
A. Balasubramaniam ◽  
G. Grupp

Contractile effects of the cardiac neuropeptides vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), and neurotensin (NT) were compared with those of l-isoproterenol (ISO) in isolated canine atrial and ventricular trabeculae muscles stimulated to contract at 1 Hz. In ventricular muscles, ISO, VIP, and PHI augmented developed isometric force by approximately 100%. VIP and PHI were three times and 1/10, respectively, as potent as ISO. VIP also exhibited positive inotropic effects in atrial trabeculae. The contractile responses to VIP were unchanged after beta-adrenergic blockade with nadolol at a concentration (10 microM) that shifted the ISO dose-response curve two to three orders of magnitude to the right. In atrial and ventricular trabeculae, NPY (1 microM) attenuated contractile force by 36 +/- 8 and 30 +/- 4%, respectively. Each peptide also caused comparable increases or decreases in the rate of development of force and the rate of relaxation. CGRP and NT caused no significant changes in developed force in either atrial or ventricular muscles in concentrations up to 1 microM. Our results indicate a potential positive inotropic action of endogenous VIP and PHI and a cardiodepressant effect of endogenous NPY in the canine heart.


2001 ◽  
Vol 169 (1) ◽  
pp. 177-183 ◽  
Author(s):  
K Terui ◽  
A Higashiyama ◽  
N Horiba ◽  
KI Furukawa ◽  
S Motomura ◽  
...  

Corticotropin-releasing factor (CRF) has a coronary vasodilator effect and a positive inotropic effect on the isolated rat heart. Recently, expression of CRF receptor type 2 (CRF-R2) has been demonstrated in the heart. In addition, urocortin (Ucn), a new member of the CRF family, has been reported to have much greater affinity for CRF-R2 than CRF. It is suggested that the cardiac effects of Ucn may be more potent than those of CRF. We compared the effect of Ucn with that of CRF on isolated rat heart. The effects of Ucn were then analyzed to determine whether these effects were mediated by CRF receptors and/or any other mediators under the following conditions: perfusion buffer containing (1) alpha-helical CRF 9-41, (2) indomethacin, (3) N(G)-nitro-l -arginine methylester and (4) propranolol. Ucn exhibited a greater effect with a longer duration of action than CRF. Indomethacin significantly attenuated the vasodilator effects of Ucn (P<0.05). CRF receptor antagonist diminished both coronary vasodilation and the positive inotropic effects of Ucn (P<0.05). These results suggest that the cardiac effects of Ucn may be mediated by a CRF receptor, and prostaglandins may be involved in the vasodilator effect.


Sign in / Sign up

Export Citation Format

Share Document