scholarly journals The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle.

1991 ◽  
Vol 97 (5) ◽  
pp. 913-947 ◽  
Author(s):  
G Pizarro ◽  
L Csernoch ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (-50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release.

1991 ◽  
Vol 97 (5) ◽  
pp. 845-884 ◽  
Author(s):  
L Csernoch ◽  
G Pizarro ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 98 (2) ◽  
pp. 365-378 ◽  
Author(s):  
G Szücs ◽  
Z Papp ◽  
L Csernoch ◽  
L Kovács

Intramembrane charge movement was measured on skeletal muscle fibers of the frog in a single Vaseline-gap voltage clamp. Charge movements determined both under polarized conditions (holding potential, VH = -100 mV; Qmax = 30.4 +/- 4.7 nC/micro(F), V = -44.4 mV, k = 14.1 mV; charge 1) and in depolarized states (VH = 0 mV; Qmax = 50.0 +/- 6.7 nC/micro(F), V = -109.1 mV, k = 26.6 mV; charge 2) had properties as reported earlier. Linear capacitance (LC) of the polarized fibers was increased by 8.8 +/- 4.0% compared with that of the depolarized fibers. Using control pulses measured under depolarized conditions to calculate charge 1, a minor change in the voltage dependence (to V = -44.6 mV and k = 14.5 mV) and a small increase in the maximal charge (to Qmax = 31.4 +/- 5.5 nC/micro(F] were observed. While in most cases charge 1 transients seemed to decay with a single exponential time course, charge 2 currents showed a characteristic biexponential behavior at membrane potentials between -90 and -180 mV. The voltage dependence of the rate constant of the slower component was fitted with a simple constant field diffusion model (alpha m = 28.7 s-1, V = -124.0 mV, and k = 15.6 mV). The midpoint voltage (V) was similar to that obtained from the Q-V fit of charge 2, while the steepness factor (k) resembled that of charge 1. This slow component could also be isolated using a stepped OFF protocol; that is, by hyperpolarizing the membrane to -190 mV for 200 ms and then coming back to 0 mV in two steps. The faster component was identified as an ionic current insensitive to 20 mM Co2+ but blocked by large hyperpolarizing pulses. These findings are consistent with the model implying that charge 1 and the slower component of charge 2 interconvert when the holding potential is changed. They also explain the difference previously found when comparing the steepness factors of the voltage dependence of charge 1 and charge 2.


1994 ◽  
Vol 103 (1) ◽  
pp. 125-147 ◽  
Author(s):  
J García ◽  
T Tanabe ◽  
K G Beam

In both skeletal and cardiac muscle, the dihydropyridine (DHP) receptor is a critical element in excitation-contraction (e-c) coupling. However, the mechanism for calcium release is completely different in these muscles. In cardiac muscle the DHP receptor functions as a rapidly-activated calcium channel and the influx of calcium through this channel induces calcium release from the sarcoplasmic reticulum (SR). In contrast, in skeletal muscle the DHP receptor functions as a voltage sensor and as a slowly-activating calcium channel; in this case, the voltage sensor controls SR calcium release. It has been previously demonstrated that injection of dysgenic myotubes with cDNA (pCAC6) encoding the skeletal muscle DHP receptor restores the slow calcium current and skeletal type e-c coupling that does not require entry of external calcium (Tanabe, Beam, Powell, and Numa. 1988. Nature. 336:134-139). Furthermore, injection of cDNA (pCARD1) encoding the cardiac DHP receptor produces rapidly activating calcium current and cardiac type e-c coupling that does require calcium entry (Tanabe, Mikami, Numa, and Beam. 1990. Nature. 344:451-453). In this paper, we have studied the voltage dependence of, and the relationship between, charge movement, calcium transients, and calcium current in normal skeletal muscle cells in culture. In addition, we injected pCAC6 or pCARD1 into the nuclei of dysgenic myotubes and studied the relationship between the restored events and compared them with those of the normal cells. Charge movement and calcium currents were recorded with the whole cell patch-clamp technique. Calcium transients were measured with Fluo-3 introduced through the patch pipette. The kinetics and voltage dependence of the charge movement, calcium transients, and calcium current in dysgenic myotubes expressing pCAC6 were qualitatively similar to the ones elicited in normal myotubes: the calcium transient displayed a sigmoidal dependence on voltage and was still present after the addition of 0.5 mM Cd2+ + 0.1 mM La3+. In contrast, the calcium transient in dysgenic myotubes expressing pCARD1 followed the amplitude of the calcium current and thus showed a bell shaped dependence on voltage. In addition, the transient had a slower rate of rise than in pCAC6-injected myotubes and was abolished completely by the addition of Cd2+ + La3+.


1994 ◽  
Vol 104 (3) ◽  
pp. 449-476 ◽  
Author(s):  
N Shirokova ◽  
G Pizarro ◽  
E Ríos

Asymmetric membrane currents and calcium transients were recorded simultaneously from cut segments of frog skeletal muscle fibers voltage clamped in a double Vaseline-gap chamber in the presence of high concentration of EGTA intracellularly. An inward phase of asymmetric currents following the hump component was observed in all fibers during the depolarization pulse to selected voltages (congruent to -45 mV). The average value of the peak inward current was 0.1 A/F (SEM = 0.01, n = 18), and the time at which it occurred was 34 ms (SEM = 1.8, n = 18). A second delayed outward phase of asymmetric current was observed after the inward phase, in those experiments in which hump component and inward phase were large. It peaked at more variable time (between 60 and 130 ms) with amplitude 0.02 A/F (SEM = 0.003, n = 11). The transmembrane voltage during a pulse, measured with a glass microelectrode, reached its steady value in less than 10 ms and showed no oscillations. The potential was steady at the time when the delayed component of asymmetric current occurred. ON and OFF charge transfers were equal for all pulse durations. The inward phase moved 1.4 nC/microF charge (SEM = 0.8, n = 6), or about one third of the final value of charge mobilized by these small pulses, and the second outward phase moved 0.7 nC/microF (SEM = 0.8, n = 6), bringing back about half of the charge moved during the inward phase. When repolarization intersected the peak of the inward phase, the OFF charge transfer was independent of the repolarization voltage in the range -60 to -90 mV. When both pre- and post-pulse voltages were changed between -120 mV and -60 mV, the equality of ON and OFF transfers of charge persisted, although they changed from 113 to 81% of their value at -90 mV. The three delayed phases in asymmetric current were also observed in experiments in which the extracellular solution contained Cd2+, La3+ and no Ca2+. Large increases in intracellular [Cl-] were imposed, and had no major effect on the delayed components of the asymmetric current. The Ca2+ transients measured optically and the calculated Ca2+ release fluxes had three phases whenever a visible outward phase followed the inward phase in the asymmetric current. Several interventions intended to interfere with Ca release, reduced or eliminated the three delayed phases of the asymmetric current.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 97 (5) ◽  
pp. 885-896 ◽  
Author(s):  
J García ◽  
G Pizarro ◽  
E Ríos ◽  
E Stefani

Three manifestations of excitation-contraction (E-C) coupling were measured in cut skeletal muscle fibers of the frog, voltage clamped in a double Vaseline gap: intramembrane charge movements, myoplasmic Ca2+ transients, and changes in optical transparency. Pulsing patterns in the presence of high [EGTA] intracellularly, shown by García et al. (1989. J. Gen. Physiol. 94:973-986) to deplete Ca2+ in the sarcoplasmic reticulum, were found to change the above manifestations. With an intracellular solution containing 15 mM EGTA and 0 Ca, 10-15 pulses (100 ms) to -20 mV at a frequency of 2 min-1 reduced the "hump" component of charge movement current. This effect was reversible by 5 min of rest. The same effect was obtained in 62.5 mM EGTA and 0 Ca by pulsing at 0.2 min-1. This effect was reversible by adding calcium to the EGTA solution, for a nominal [Ca2+]i of 200 nM, and was prevented by adding calcium to the EGTA solution before pulsing. The suppression of the hump was accompanied by elimination of the optical manifestations of E-C coupling. The current suppressed was found by subtraction and had the following properties: delayed onset, a peak at a variable interval (10-20 ms) into the pulse, a negative phase (inward current) after the peak, and a variable OFF transient that could be multi-phasic and carried less charge than the ON transient. In the previous paper (Csernoch et al., 1991. J. Gen. Physiol. 97:845-884) it was shown that several interventions suppress a similar component of charge movement current, identified with the "hump" or Q gamma current (I gamma). Based on the similarity to that component, the charge movement suppressed by the depletion protocols can also be identified with I gamma. The fact that I gamma is suppressed by Ca2+ depletion and the kinetic properties of the charge suppressed is inconsistent with the existence of separate sets of voltage sensors underlying the two components of charge movement, Q beta and Q gamma. This is explicable if Q gamma is a consequence of calcium release from the sarcoplasmic reticulum.


2002 ◽  
Vol 283 (3) ◽  
pp. C941-C949 ◽  
Author(s):  
Kris J. Alden ◽  
Jesús Garcı́a

The skeletal muscle L-type calcium channel or dihydropyridine receptor (DHPR) plays an integral role in excitation-contraction (E-C) coupling. Its activation initiates three sequential events: charge movement (Qr), calcium release, and calcium current ( I Ca,L). This relationship suggests that changes in Qr might affect release and I Ca,L. Here we studied the effect of gabapentin (GBP) on the three events generated by DHPRs in skeletal myotubes in culture. GBP specifically binds to the α2/δ1 subunit of the brain and skeletal muscle DHPR. Myotubes were stimulated with a protocol that included a depolarizing prepulse to inactivate voltage-dependent proteins other than DHPRs. Gabapentin (50 μM) significantly increased Qr while decreasing the rate of rise of calcium transients. Gabapentin also reduced the maximum amplitude of the I Ca,L (as we previously reported) without modifying the kinetics of activation. Exposure of GBP-treated myotubes to 10 μM nifedipine prevented the increase of Qr promoted by this drug, indicating that the extra charge recorded originated from DHPRs. Our data suggest that GBP dissociates the functions of the DHPR from the initial voltage-sensing step and implicates a role for the α2/δ1 subunit in E-C coupling.


2002 ◽  
Vol 120 (5) ◽  
pp. 629-645 ◽  
Author(s):  
Baron Chanda ◽  
Francisco Bezanilla

The primary voltage sensor of the sodium channel is comprised of four positively charged S4 segments that mainly differ in the number of charged residues and are expected to contribute differentially to the gating process. To understand their kinetic and steady-state behavior, the fluorescence signals from the sites proximal to each of the four S4 segments of a rat skeletal muscle sodium channel were monitored simultaneously with either gating or ionic currents. At least one of the kinetic components of fluorescence from every S4 segment correlates with movement of gating charge. The fast kinetic component of fluorescence from sites S216C (S4 domain I), S660C (S4 domain II), and L1115C (S4 domain III) is comparable to the fast component of gating currents. In contrast, the fast component of fluorescence from the site S1436C (S4 domain IV) correlates with the slow component of gating. In all the cases, the slow component of fluorescence does not have any apparent correlation with charge movement. The fluorescence signals from sites reflecting the movement of S4s in the first three domains initiate simultaneously, whereas the fluorescence signals from the site S1436C exhibit a lag phase. These results suggest that the voltage-dependent movement of S4 domain IV is a later step in the activation sequence. Analysis of equilibrium and kinetic properties of fluorescence over activation voltage range indicate that S4 domain III is likely to move at most hyperpolarized potentials, whereas the S4s in domain I and domain II move at more depolarized potentials. The kinetics of fluorescence changes from sites near S4-DIV are slower than the activation time constants, suggesting that the voltage-dependent movement of S4-DIV may not be a prerequisite for channel opening. These experiments allow us to map structural features onto the kinetic landscape of a sodium channel during activation.


Sign in / Sign up

Export Citation Format

Share Document