scholarly journals Interfering with calcium release suppresses I gamma, the "hump" component of intramembranous charge movement in skeletal muscle.

1991 ◽  
Vol 97 (5) ◽  
pp. 845-884 ◽  
Author(s):  
L Csernoch ◽  
G Pizarro ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)

1983 ◽  
Vol 82 (5) ◽  
pp. 679-701 ◽  
Author(s):  
D T Campbell

Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.


1988 ◽  
Vol 92 (1) ◽  
pp. 1-26 ◽  
Author(s):  
J S Smith ◽  
T Imagawa ◽  
J Ma ◽  
M Fill ◽  
K P Campbell ◽  
...  

The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.


1993 ◽  
Vol 102 (3) ◽  
pp. 449-481 ◽  
Author(s):  
E Ríos ◽  
M Karhanek ◽  
J Ma ◽  
A González

A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88-118), and analogous to one proposed by Marks and Jones for voltage-dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium dependency of charge movement with voltage. The paradoxical slowing of charge movement by perchlorate also results from reciprocal effects of the channel on the allosterically coupled voltage sensors. The observations of the previous articles plus the simulations in this article constitute functional evidence of allosteric transmission.


1991 ◽  
Vol 97 (5) ◽  
pp. 913-947 ◽  
Author(s):  
G Pizarro ◽  
L Csernoch ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (-50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release.


2017 ◽  
Vol 149 (11) ◽  
pp. 1041-1058 ◽  
Author(s):  
Juan Ferreira Gregorio ◽  
Germán Pequera ◽  
Carlo Manno ◽  
Eduardo Ríos ◽  
Gustavo Brum

In skeletal muscle, the four-helix voltage-sensing modules (VSMs) of CaV1.1 calcium channels simultaneously gate two Ca2+ pathways: the CaV1.1 pore itself and the RyR1 calcium release channel in the sarcoplasmic reticulum. Here, to gain insight into the mechanism by which VSMs gate RyR1, we quantify intramembrane charge movement associated with VSM activation (sensing current) and gated Ca2+ release flux in single muscle cells of mice and rats. As found for most four-helix VSMs, upon sustained depolarization, rodent VSMs lose the ability to activate Ca2+ release channels opening; their properties change from a functionally capable mode, in which the mobile sensor charge is called charge 1, to an inactivated mode, charge 2, with a voltage dependence shifted toward more negative voltages. We find that charge 2 is promoted and Ca2+ release inactivated when resting, well-polarized muscle cells are exposed to low extracellular [Ca2+] and that the opposite occurs in high [Ca2+]. It follows that murine VSMs are partly inactivated at rest, which establishes the reduced availability of voltage sensing as a pathogenic mechanism in disorders of calcemia. We additionally find that the degree of resting inactivation is significantly different in two mouse strains, which underscores the variability of voltage sensor properties and their vulnerability to environmental conditions. Our studies reveal that the resting and activated states of VSMs are equally favored by extracellular Ca2+. Promotion by an extracellular species of two states of the VSM that differ in the conformation of the activation gate requires the existence of a second gate, inactivation, topologically extracellular and therefore accessible from outside regardless of the activation state.


1993 ◽  
Vol 102 (3) ◽  
pp. 373-421 ◽  
Author(s):  
A González ◽  
E Ríos

The effects of the anion perchlorate (present extracellularly at 8 mM) were studied on functional skeletal muscle fibers from Rana pipiens, voltage-clamped in a Vaseline gap chamber. Established methods were used to monitor intramembranous charge movement and flux of Ca release from the sarcoplasmic reticulum (SR) during pulse depolarization. Saponin permeabilization of the end portions of the fiber segment (Irving, M., J. Maylie, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:1-41) substantially reduced the amount of charge moving during conventional control pulses, thus minimizing a technical error that plagued our previous studies. Perchlorate prolonged the ON time course of charge movement, especially at low and intermediate voltages. The OFFs were also made slower, the time constant increasing twofold. The hump kinetic component was exaggerated by ClO4- or was made to appear in fibers that did not have it in reference conditions. ClO4- had essentially no kinetic ON effects at high voltages (> or = 10 mV). ClO4- changed the voltage distribution of mobile charge. In single Boltzmann fits, the midpoint potential V was shifted -20 mV and the steepness parameter K was reduced by 4.7 mV (or 1.78-fold), but the maximum charge was unchanged (n = 9). Total Ca content in the SR, estimated using the method of Schneider et al. (Schneider, M. F., B. J. Simon, and G. Szucs. 1987. Journal of Physiology. 392:167-192) for correcting for depletion, stayed constant over tens of minutes in reference conditions but decayed in ClO4- at an average rate of 0.3 mumol/liter myoplasmic water per s. ClO4- changed the kinetics of release flux, reducing the fractional inactivation of release after the peak. ClO4- shifted the voltage dependence of Ca release flux. In particular, the threshold voltage for Ca release was shifted by about -20 mV, and the activation of the steady component of release flux was shifted by > 20 mV in the negative direction. The shift of release activation was greater than that of mobile charge. Thus the threshold charge, defined as the minimum charge moved for eliciting a detectable Ca transient, was reduced from 6 nC/microF (0.55, n = 7) to 3.4 (0.53). The average of the paired differences was 2.8 (0.33, P < 0.01). The effects of ClO4- were then studied in fibers in modified functional situations. Depletion of Ca in the SR, achieved by high frequency pulsing in the presence of intracellular BAPTA and EGTA, simplified but did not eliminate the effects of ClO4-.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 270 (3) ◽  
pp. C892-C897 ◽  
Author(s):  
A. Gonzalez ◽  
C. Caputo

Cut twitch muscle fibers, mounted in a triple Vaseline-gap chamber, were used to study the effects of temperature on intramembranous charge movement and, in particular, on the repriming of charge 1 (the intramembranous charge that normally moves in the potential range between -100 and +40 mV). Changing the holding potential from -90 to 0 mV modified the voltage distribution of charge movement but not the maximum movable charge. Temperature changes between 16 and 5 degrees C did not modify the fiber linear capacitance, the maximum nonlinear intramembranous charge, or the voltage distribution of charge 1 and charge 2 (the intramembranous charge moving in the membrane potential range between approximately -4 and -160 mV). We used a pulse protocol designed to study the repriming time course of charge 1, with little contamination from charge 2. The time course of charge movement repriming at 15 degrees C is described by a double exponential with time constants of 4.2 and 25 s. Repriming kinetics were found to be highly temperature dependent, with two rate-limiting steps having Q10 (increase in rate of a process by raising temperature 10 degrees C) values of 1.7 and 7.1 above and below 11.5 degrees C, respectively. This is characteristic of processes with a high energy of activation and could be associated with a conformational change of the voltage sensor or with the interaction between the voltage sensor and the calcium release channel.


Sign in / Sign up

Export Citation Format

Share Document