scholarly journals Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors.

1994 ◽  
Vol 103 (1) ◽  
pp. 125-147 ◽  
Author(s):  
J García ◽  
T Tanabe ◽  
K G Beam

In both skeletal and cardiac muscle, the dihydropyridine (DHP) receptor is a critical element in excitation-contraction (e-c) coupling. However, the mechanism for calcium release is completely different in these muscles. In cardiac muscle the DHP receptor functions as a rapidly-activated calcium channel and the influx of calcium through this channel induces calcium release from the sarcoplasmic reticulum (SR). In contrast, in skeletal muscle the DHP receptor functions as a voltage sensor and as a slowly-activating calcium channel; in this case, the voltage sensor controls SR calcium release. It has been previously demonstrated that injection of dysgenic myotubes with cDNA (pCAC6) encoding the skeletal muscle DHP receptor restores the slow calcium current and skeletal type e-c coupling that does not require entry of external calcium (Tanabe, Beam, Powell, and Numa. 1988. Nature. 336:134-139). Furthermore, injection of cDNA (pCARD1) encoding the cardiac DHP receptor produces rapidly activating calcium current and cardiac type e-c coupling that does require calcium entry (Tanabe, Mikami, Numa, and Beam. 1990. Nature. 344:451-453). In this paper, we have studied the voltage dependence of, and the relationship between, charge movement, calcium transients, and calcium current in normal skeletal muscle cells in culture. In addition, we injected pCAC6 or pCARD1 into the nuclei of dysgenic myotubes and studied the relationship between the restored events and compared them with those of the normal cells. Charge movement and calcium currents were recorded with the whole cell patch-clamp technique. Calcium transients were measured with Fluo-3 introduced through the patch pipette. The kinetics and voltage dependence of the charge movement, calcium transients, and calcium current in dysgenic myotubes expressing pCAC6 were qualitatively similar to the ones elicited in normal myotubes: the calcium transient displayed a sigmoidal dependence on voltage and was still present after the addition of 0.5 mM Cd2+ + 0.1 mM La3+. In contrast, the calcium transient in dysgenic myotubes expressing pCARD1 followed the amplitude of the calcium current and thus showed a bell shaped dependence on voltage. In addition, the transient had a slower rate of rise than in pCAC6-injected myotubes and was abolished completely by the addition of Cd2+ + La3+.

1994 ◽  
Vol 103 (1) ◽  
pp. 107-123 ◽  
Author(s):  
J García ◽  
K G Beam

The purpose of this study was to characterize excitation-contraction (e-c) coupling in myotubes for comparison with e-c coupling of adult skeletal muscle. The whole cell configuration of the patch clamp technique was used in conjunction with the calcium indicator dye Fluo-3 to study the calcium transients and slow calcium currents elicited by voltage clamp pulses in cultured myotubes obtained from neonatal mice. Cells were held at -80 mV and stimulated with 15-20 ms test depolarizations preceded and followed by voltage steps designed to isolate the slow calcium current. The slow calcium current had a threshold for activation of about 0 mV; the peak amplitude of the current reached a maximum at 30 to 40 mV a and then declined for still stronger depolarizations. The calcium transient had a threshold of about -10 mV, and its amplitude increased as a sigmoidal function of test potential and did not decrease again even for test depolarizations sufficiently strong (> or = 50 mV) that the amplitude of the slow calcium current became very small. Thus, the slow calcium current in myotubes appears to have a negligible role in the process of depolarization-induced release of intracellular calcium and this process in myotubes is essentially like that in adult skeletal muscle. After repolarization, however, the decay of the calcium transient in myotubes was very slow (hundreds of ms) compared to adult muscle, particularly after strong depolarizations that triggered larger calcium transients. Moreover, when cells were repolarized after strong depolarizations, the transient typically continued to increase slowly for up to several tens of ms before the onset of decay. This continued increase after repolarization was abolished by the addition of 5 mM BAPTA to the patch pipette although the rapid depolarization-induced release was not, suggesting that the slow increase might be a regenerative response triggered by the depolarization-induced release of calcium. The addition of either 0.5 mM Cd2+ + 0.1 mM La3+ or the dihydropyridine (+)-PN 200-110 (1 microM) reduced the amplitude of the calcium transient by mechanisms that appeared to be unrelated to the block of current that these agents produce. In the majority of cells, the decay of the transient was accelerated by the addition of the heavy metals or the dihydropyridine, consistent with the idea that the removal system becomes saturated for large calcium releases and becomes more efficient when the size of the release is reduced.


1994 ◽  
Vol 104 (6) ◽  
pp. 1113-1128 ◽  
Author(s):  
J García ◽  
K G Beam

Immature skeletal muscle cells, both in vivo and in vitro, express a high density of T type calcium current and a relatively low density of the dihydropyridine receptor, the protein thought to function as the Islow calcium channel and as the voltage sensor for excitation-contraction coupling. Although the role of the voltage sensor in eliciting elevations of myoplasmic, free calcium (calcium transients) has been examined, the role of the T type current has not. In this study we examined calcium transients associated with the T type current in cultured myotubes from normal and dysgenic mice, using the whole cell configuration of the patch clamp technique in conjunction with the calcium indicator dye Fluo-3. In both normal and dysgenic myotubes, the T type current was activated by weak depolarizations and was maximal for test pulses to approximately -20 mV. In normal myotubes that displayed T type calcium current, the calcium transient followed the amplitude and the integral of the current at low membrane potentials (-40 to -20 mV) but not at high potentials, where the calcium transient is caused by SR calcium release. The amplitude of the calcium transient for a pulse to -20 mV measured at 15 ms after depolarization represented, on average, 4.26 +/- 0.68% (n = 19) of the maximum amplitude of the calcium transient elicited by strong, 15-ms test depolarizations. In dysgenic myotubes, the calcium transient followed the integral of the calcium current at all test potentials, in cells expressing only T type current as well as in cells possessing both T type current and the L type current Idys. Moreover, the calcium transient also followed the amplitude and time course of current in dysgenic myotubes expressing the cardiac, DHP-sensitive calcium channel. Thus, in those cases where the transient appears to be a consequence of calcium entry, it has the same time course as the integral of the calcium current. Inactivation of the T type calcium current with 1-s prepulses, or block of the current by the addition of amiloride (0.3-1.0 mM) caused a reduction in the calcium transient which was similar in normal and dysgenic myotubes. To allow calculation of expected changes of intracellular calcium in response to influx, myotubes were converted to a roughly spherical shape (myoballs) by adding 0.5 microM colchicine to culture dishes of normal cells. Calcium currents and calcium transients recorded from myoballs were similar to those in normal myotubes.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 97 (5) ◽  
pp. 429-435 ◽  
Author(s):  
Ian C. Smith ◽  
Rene Vandenboom ◽  
A. Russell Tupling

The amount of calcium released from the sarcoplasmic reticulum in skeletal muscle rapidly declines during repeated twitch contractions. In this study, we test the hypothesis that caffeine can mitigate these contraction-induced declines in calcium release. Lumbrical muscles were isolated from male C57BL/6 mice and loaded with the calcium-sensitive indicator, AM-furaptra. Muscles were then stimulated at 8 Hz for 2.0 s in the presence or absence of 0.5 mM caffeine, at either 30 °C or 37 °C. The amplitude and area of the furaptra-based intracellular calcium transients and force produced during twitch contractions were calculated. For each of these measures, the values for twitch 16 relative to twitch 1 were higher in the presence of caffeine than in the absence of caffeine at both temperatures. We conclude that caffeine can attenuate contraction-induced diminutions of calcium release during repeated twitch contractions, thereby contributing to the inotropic effects of caffeine.


2002 ◽  
Vol 283 (3) ◽  
pp. C941-C949 ◽  
Author(s):  
Kris J. Alden ◽  
Jesús Garcı́a

The skeletal muscle L-type calcium channel or dihydropyridine receptor (DHPR) plays an integral role in excitation-contraction (E-C) coupling. Its activation initiates three sequential events: charge movement (Qr), calcium release, and calcium current ( I Ca,L). This relationship suggests that changes in Qr might affect release and I Ca,L. Here we studied the effect of gabapentin (GBP) on the three events generated by DHPRs in skeletal myotubes in culture. GBP specifically binds to the α2/δ1 subunit of the brain and skeletal muscle DHPR. Myotubes were stimulated with a protocol that included a depolarizing prepulse to inactivate voltage-dependent proteins other than DHPRs. Gabapentin (50 μM) significantly increased Qr while decreasing the rate of rise of calcium transients. Gabapentin also reduced the maximum amplitude of the I Ca,L (as we previously reported) without modifying the kinetics of activation. Exposure of GBP-treated myotubes to 10 μM nifedipine prevented the increase of Qr promoted by this drug, indicating that the extra charge recorded originated from DHPRs. Our data suggest that GBP dissociates the functions of the DHPR from the initial voltage-sensing step and implicates a role for the α2/δ1 subunit in E-C coupling.


2002 ◽  
Vol 121 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Roberto Araya ◽  
José L. Liberona ◽  
J. César Cárdenas ◽  
Nora Riveros ◽  
Manuel Estrada ◽  
...  

The dihydropyridine receptor (DHPR), normally a voltage-dependent calcium channel, functions in skeletal muscle essentially as a voltage sensor, triggering intracellular calcium release for excitation-contraction coupling. In addition to this fast calcium release, via ryanodine receptor (RYR) channels, depolarization of skeletal myotubes evokes slow calcium waves, unrelated to contraction, that involve the cell nucleus (Jaimovich, E., R. Reyes, J.L. Liberona, and J.A. Powell. 2000. Am. J. Physiol. Cell Physiol. 278:C998–C1010). We tested the hypothesis that DHPR may also be the voltage sensor for these slow calcium signals. In cultures of primary rat myotubes, 10 μM nifedipine (a DHPR inhibitor) completely blocked the slow calcium (fluo-3-fluorescence) transient after 47 mM K+ depolarization and only partially reduced the fast Ca2+ signal. Dysgenic myotubes from the GLT cell line, which do not express the α1 subunit of the DHPR, did not show either type of calcium transient following depolarization. After transfection of the α1 DNA into the GLT cells, K+ depolarization induced slow calcium transients that were similar to those present in normal C2C12 and normal NLT cell lines. Slow calcium transients in transfected cells were blocked by nifedipine as well as by the G protein inhibitor, pertussis toxin, but not by ryanodine, the RYR inhibitor. Since slow Ca2+ transients appear to be mediated by IP3, we measured the increase of IP3 mass after K+ depolarization. The IP3 transient seen in control cells was inhibited by nifedipine and was absent in nontransfected dysgenic cells, but α1-transfected cells recovered the depolarization-induced IP3 transient. In normal myotubes, 10 μM nifedipine, but not ryanodine, inhibited c-jun and c-fos mRNA increase after K+ depolarization. These results suggest a role for DHPR-mediated calcium signals in regulation of early gene expression. A model of excitation-transcription coupling is presented in which both G proteins and IP3 appear as important downstream mediators after sensing of depolarization by DHPR.


1991 ◽  
Vol 97 (5) ◽  
pp. 913-947 ◽  
Author(s):  
G Pizarro ◽  
L Csernoch ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (-50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release.


1989 ◽  
Vol 94 (3) ◽  
pp. 429-444 ◽  
Author(s):  
B A Adams ◽  
K G Beam

The whole-cell patch-clamp technique was used to study voltage-dependent calcium currents in primary cultures of myotubes and in freshly dissociated skeletal muscle from normal and dysgenic mice. In addition to the transient, dihydropyridine (DHP)-insensitive calcium current previously described, a maintained DHP-sensitive calcium current was found in dysgenic skeletal muscle. This current, here termed ICa-dys, is largest in acutely dissociated fetal or neonatal dysgenic muscle and also in dysgenic myotubes grown on a substrate of killed fibroblasts. In dysgenic myotubes grown on untreated plastic culture dishes, ICa-dys is usually so small that it cannot be detected. In addition, ICa-dys is apparently absent from normal skeletal muscle. From a holding potential of -80 mV. ICa-dys becomes apparent for test pulses to approximately -20 mV and peaks at approximately +20 mV. The current activates rapidly (rise time approximately 5 ms at 20 degrees C) and with 10 mM Ca as charge carrier inactivates little or not at all during a 200-ms test pulse. Thus, ICa-dys activates much faster than the slowly activating calcium current of normal skeletal muscle and does not display Ca-dependent inactivation like the cardiac L-type calcium current. Substituting Ba for Ca as the charge carrier doubles the size of ICa-dys without altering its kinetics. ICa-dys is approximately 75% blocked by 100 nM (+)-PN 200-110 and is increased about threefold by 500 nM racemic Bay K 8644. The very high sensitivity of ICa-dys to these DHP compounds distinguishes it from neuronal L-type calcium current and from the calcium currents of normal skeletal muscle. ICa-dys may represent a calcium channel that is normally not expressed in skeletal muscle, or a mutated form of the skeletal muscle slow calcium channel.


1991 ◽  
Vol 97 (5) ◽  
pp. 845-884 ◽  
Author(s):  
L Csernoch ◽  
G Pizarro ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document