Neutron star matter at high temperatures and densities. I - Bulk properties of nuclear matter

1978 ◽  
Vol 223 ◽  
pp. 314 ◽  
Author(s):  
J. M. Lattimer ◽  
D. G. Ravenhall
1974 ◽  
Vol 53 ◽  
pp. 67-75
Author(s):  
J. Robert Buchler

The nuclear Thomas-Fermi model which is based on nuclear matter calculations has been successfully applied to the study of the bulk properties of nuclei. It is ideally suited for extrapolation into the region of very neutron-rich and of superheavy nuclei. It is therefore a valuable approach for r-process calculations as well as for the study of neutron star matter at subnuclear densities.


2011 ◽  
Vol 26 (05) ◽  
pp. 367-375 ◽  
Author(s):  
A. SULAKSONO ◽  
MARLIANA ◽  
KASMUDIN

The effects of the presence of weakly interacting light boson (WILB) in neutron star matter have been revisited. Direct checking based on the experimental range of symmetric nuclear matter binding energy1 and the fact that the presence of this boson should give no observed effect on the crust properties of neutron star matter, shows that the characteristic scale of WILB [Formula: see text] should be ≤2 GeV-2. The recent observational data with significant low neutron stars radii2 and the recent largest pulsar which has been precisely measured, i.e. J1903+0327 (Ref. 3) indicate that in-medium modification of WILB mass in neutron stars cannot be neglected.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350026 ◽  
Author(s):  
CHEN WU ◽  
WEI-LIANG QIAN ◽  
YU-GANG MA ◽  
JI-FENG YANG

Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K- in normal nuclear matter UK ≳ -100 MeV , the Kaon condensation phase is absent in the inner cores of the neutron stars.


2004 ◽  
Vol 70 (6) ◽  
Author(s):  
Tomonori Tanigawa ◽  
Masayuki Matsuzaki ◽  
Satoshi Chiba

2011 ◽  
Vol 20 (supp02) ◽  
pp. 146-151 ◽  
Author(s):  
MOISÉS RAZEIRA ◽  
ALEXANDRE MESQUITA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
ROSANA O. GOMES ◽  
AURORA PÉREZ MARTÍNEZ ◽  
...  

A recently developed effective relativistic theory for nuclear matter is applied to the description of the cooling process of baryon degenerate neutron star matter through neutrino emission considering direct URCA processes. In our approach nucleons and antikaon condensates interact with σ, ω, ρ, δ and ς meson fields. Our results indicate a substantial decrease of the critical threshold density for the URCA process. This is because the presence of these interacting degrees of freedom increase the proportion of protons, producing simultaneously the reduction of the isospin asymmetry in nuclear matter. Our results also indicate that neutron stars with larger masses than MNE ~ 0.9M⊙, which represents the stellar critical threshold (the mass of the neutron star whose baryon central density reached the critical density) would be cooled efficiently and be outside the possibility of observation by heat radiation in a few years.


Sign in / Sign up

Export Citation Format

Share Document