Theoretical models of interstellar shocks. I - Radiative transfer and UV precursors

1979 ◽  
Vol 227 ◽  
pp. 131 ◽  
Author(s):  
J. M. Shull ◽  
C. F. McKee
1998 ◽  
Vol 9 (9) ◽  
pp. 159-218 ◽  
Author(s):  
Siu-Chun Lee ◽  
George R. Cunnington, Jr.

2018 ◽  
Vol 14 (S346) ◽  
pp. 62-66
Author(s):  
Thomas Madura ◽  
T. R. Gull ◽  
N. Clementel ◽  
M. Corcoran ◽  
A. Damineli ◽  
...  

AbstractEta Carinae is the most massive active binary within 10,000 light-years. While famous for the largest non-terminal stellar explosion ever recorded, observations reveal a supermassive (∼120 M⊙) binary consisting of an LBV and either a WR or extreme O star in a very eccentric orbit (e=0.9) with a 5.54-year period. Dramatic changes across multiple wavelengths are routinely observed as the stars move about in their highly elliptical orbits, especially around periastron when the hot (∼40 kK) companion star delves deep into the denser and much cooler (∼15 kK) extended wind photosphere of the LBV primary. Many of these changes are due to a dynamic wind-wind collision region (WWCR) that forms between the stars, plus expanding radiation-illuminated fossil WWCRs formed one, two, and three 5.54-year orbital cycles ago. These fossil WWCRs have been spatially and spectrally resolved by the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) at multiple epochs, resulting in data cubes that spatially map Eta Carinae’s innermost WWCRs and follow temporal changes in several forbidden emission lines (e.g. [Fe iii] 4659 Å, [Fe ii] 4815 Å) across the 5.54-year cycle. We present initial results of 3D time-dependent hydrodynamical and radiative-transfer simulations of the Eta Carinae binary and its WWCRs with the goal of producing synthetic data cubes of forbidden emission lines for comparison to the available HST/STIS observations. Comparison of the theoretical models to the observations reveals important details about the binary’s orbital motion, photoionization properties, and recent (5–15year) mass loss history. Such an analysis also provides a baseline for following future changes in Eta Carinae, essential for understanding the late-stage evolution of a nearby supernova progenitor. Our modeling methods can also be adapted to a number of other colliding wind binary systems (e.g. WR 140) that are scheduled to be studied with future observatories (e.g. the James Webb Space Telescope).


2019 ◽  
Vol 627 ◽  
pp. A36 ◽  
Author(s):  
Aaron Labdon ◽  
Stefan Kraus ◽  
Claire L. Davies ◽  
Alexander Kreplin ◽  
Jacques Kluska ◽  
...  

Context. T Tauri stars are low-mass young stars whose disks provide the setting for planet formation. Despite this, their structure is poorly understood. We present new infrared interferometric observations of the SU Aurigae circumstellar environment that offer resolution that is three times higher and a better baseline position angle coverage than previous observations. Aims. We aim to investigate the characteristics of the circumstellar material around SU Aur, constrain the disk geometry, composition and inner dust rim structure. Methods. The CHARA array offers unique opportunities for long baseline observations, with baselines up to 331 m. Using the CLIMB three-telescope combiner in the K-band allows us to measure visibilities as well as closure phase. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrain the physical parameters of the disk. For the first time, a dusty disk wind is introduced to the radiative transfer code TORUS to model protoplanetary disks. Our implementation is motivated by theoretical models of dusty disk winds, where magnetic field lines drive dust above the disk plane close to the sublimation zone. Results. Image reconstruction reveals an inclined disk with slight asymmetry along its minor-axis, likely due to inclination effects obscuring the inner disk rim through absorption of incident star light on the near-side and thermal re-emission and scattering of the far-side. Geometric modelling of a skewed ring finds the inner rim at 0.17 ± 0.02 au with an inclination of 50.9 ± 1.0° and minor axis position angle 60.8 ± 1.2°. Radiative transfer modelling shows a flared disk with an inner radius at 0.18 au which implies a grain size of 0.4 μm assuming astronomical silicates and a scale height of 15.0 at 100 au. Among the tested radiative transfer models, only the dusty disk wind successfully accounts for the K-band excess by introducing dust above the mid-plane.


2018 ◽  
Vol 617 ◽  
pp. A23 ◽  
Author(s):  
M. Brunner ◽  
T. Danilovich ◽  
S. Ramstedt ◽  
I. Marti-Vidal ◽  
E. De Beck ◽  
...  

Context. With the outstanding spatial resolution and sensitivity of the Atacama Large Millimeter/sub-millimeter Array (ALMA), molecular gas other than the abundant CO can be observed and resolved in circumstellar envelopes (CSEs) around evolved stars, such as the binary S-type asymptotic giant branch (AGB) star W Aquilae. Aims. We aim to constrain the chemical composition of the CSE and determine the radial abundance distribution, the photospheric peak abundance, and isotopic ratios of a selection of chemically important molecular species in the innermost CSE of W Aql. The derived parameters are put into the context of the chemical evolution of AGB stars and are compared with theoretical models. Methods. We employ one-dimensional radiative transfer modeling – with the accelerated lambda iteration (ALI) radiative transfer code–of the radial abundance distribution of a total of five molecular species (CS, SiS, 30SiS, 29SiO and H13CN) and determine the best fitting model parameters based on high-resolution ALMA observations as well as archival single-dish observations. The additional advantage of the spatially resolved ALMA observations is that we can directly constrain the radial profile of the observed line transitions from the observations. Results. We derive abundances and e-folding radii for CS, SiS, 30SiS, 29SiO and H13CN and compare them to previous studies, which are based only on unresolved single-dish spectra. Our results are in line with previous results and are more accurate due to resolution of the emission regions.


1993 ◽  
Vol 132 ◽  
pp. 171-181
Author(s):  
S.K. Parman ◽  
A. Peraiah

AbstractTheoretical models have been computed for estimating linear polarization from the extended dusty outer layers of the components of close binary stars whose surfaces are distorted by rotation and tidal effects due to the presence of secondary. We have assumed plane-parallel layers of the dusty atmospheres of the components. We have employed a wavelength dependent scattering coefficient, and Rayleigh phase function is used in solving the equation of radiative transfer . It is noticed that polarization increases with decreasing the wavelength and increasing the particle size. Polarization for uniform rotation is larger than that for non-uniform rotation. Polarization for the single stars is always less than that for a binary component.Subject headings: polarization - radiative transfer - stars: binaries - stars: late-type


Author(s):  
P. S. Sklad

Over the past several years, it has become increasingly evident that materials for proposed advanced energy systems will be required to operate at high temperatures and in aggressive environments. These constraints make structural ceramics attractive materials for these systems. However it is well known that the condition of the specimen surface of ceramic materials is often critical in controlling properties such as fracture toughness, oxidation resistance, and wear resistance. Ion implantation techniques offer the potential of overcoming some of the surface related limitations.While the effects of implantation on surface sensitive properties may be measured indpendently, it is important to understand the microstructural evolution leading to these changes. Analytical electron microscopy provides a useful tool for characterizing the microstructures produced in terms of solute concentration profiles, second phase formation, lattice damage, crystallinity of the implanted layer, and annealing behavior. Such analyses allow correlations to be made with theoretical models, property measurements, and results of complimentary techniques.


2020 ◽  
Vol 63 (2) ◽  
pp. 487-498
Author(s):  
Puisan Wong ◽  
Man Wai Cheng

Purpose Theoretical models and substantial research have proposed that general auditory sensitivity is a developmental foundation for speech perception and language acquisition. Nonetheless, controversies exist about the effectiveness of general auditory training in improving speech and language skills. This research investigated the relationships among general auditory sensitivity, phonemic speech perception, and word-level speech perception via the examination of pitch and lexical tone perception in children. Method Forty-eight typically developing 4- to 6-year-old Cantonese-speaking children were tested on the discrimination of the pitch patterns of lexical tones in synthetic stimuli, discrimination of naturally produced lexical tones, and identification of lexical tone in familiar words. Results The findings revealed that accurate lexical tone discrimination and identification did not necessarily entail the accurate discrimination of nonlinguistic stimuli that followed the pitch levels and pitch shapes of lexical tones. Although pitch discrimination and tone discrimination abilities were strongly correlated, accuracy in pitch discrimination was lower than that in tone discrimination, and nonspeech pitch discrimination ability did not precede linguistic tone discrimination in the developmental trajectory. Conclusions Contradicting the theoretical models, the findings of this study suggest that general auditory sensitivity and speech perception may not be causally or hierarchically related. The finding that accuracy in pitch discrimination is lower than that in tone discrimination suggests that comparable nonlinguistic auditory perceptual ability may not be necessary for accurate speech perception and language learning. The results cast doubt on the use of nonlinguistic auditory perceptual training to improve children's speech, language, and literacy abilities.


2015 ◽  
Vol 74 (2) ◽  
pp. 91-104 ◽  
Author(s):  
Bo Wang

Emotional arousal induced after learning has been shown to modulate memory consolidation. However, it is unclear whether the effect of postlearning arousal can extend to different aspects of memory. This study examined the effect of postlearning positive arousal on both item memory and source memory. Participants learned a list of neutral words and took an immediate memory test. Then they watched a positive or a neutral videoclip and took delayed memory tests after either 25 minutes or 1 week had elapsed after the learning phase. In both delay conditions, positive arousal enhanced consolidation of item memory as measured by overall recognition. Furthermore, positive arousal enhanced consolidation of familiarity but not recollection. However, positive arousal appeared to have no effect on consolidation of source memory. These findings have implications for building theoretical models of the effect of emotional arousal on consolidation of episodic memory and for applying postlearning emotional arousal as a technique of memory intervention.


2017 ◽  
Vol 38 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Jeffrey H. Kahn ◽  
Daniel W. Cox ◽  
A. Myfanwy Bakker ◽  
Julia I. O’Loughlin ◽  
Agnieszka M. Kotlarczyk

Abstract. The benefits of talking with others about unpleasant emotions have been thoroughly investigated, but individual differences in distress disclosure tendencies have not been adequately integrated within theoretical models of emotion. The purpose of this laboratory research was to determine whether distress disclosure tendencies stem from differences in emotional reactivity or differences in emotion regulation. After completing measures of distress disclosure tendencies, social desirability, and positive and negative affect, 84 participants (74% women) were video recorded while viewing a sadness-inducing film clip. Participants completed post-film measures of affect and were then interviewed about their reactions to the film; these interviews were audio recorded for later coding and computerized text analysis. Distress disclosure tendencies were not predictive of the subjective experience of emotion, but they were positively related to facial expressions of sadness and happiness. Distress disclosure tendencies also predicted judges’ ratings of the verbal disclosure of emotion during the interview, but self-reported disclosure and use of positive and negative emotion words were not associated with distress disclosure tendencies. The authors present implications of this research for integrating individual differences in distress disclosure with models of emotion.


Sign in / Sign up

Export Citation Format

Share Document