Centrifugally Driven Winds from Protostellar Disks. II. Forbidden-Line Emission in T Tauri Stars

1993 ◽  
Vol 408 ◽  
pp. 148 ◽  
Author(s):  
Pedro N. Safier
1990 ◽  
Vol 354 ◽  
pp. 687 ◽  
Author(s):  
Sylvie Cabrit ◽  
Suzan Edwards ◽  
Stephen E. Strom ◽  
Karen M. Strom

1997 ◽  
Vol 163 ◽  
pp. 525-530 ◽  
Author(s):  
T.P. Ray ◽  
M. Corcoran

AbstractThe Herbig Ae/Be stars are optically visible pre-main sequence stars of intermediate mass (M* ≈ 3−8M⊙) and are thought to be the higher mass analogues of the T Tauri stars. While there is no doubt that classical T Tauri stars, i.e. those with EW(Hα) ≳ 10 Å, are surrounded by disks, it remains controversial as to whether this is the case with the equivalent Herbig Ae/Be stars. It has even been questioned whether the powerful winds that are ejected by Herbig Ae/Be stars are driven by accretion. To address these problems we have examined a large sample of these stars with the idea of using their forbidden line emission as an indirect diagnostic for the presence of disks. Striking similarities with the classical T Tauri stars are found. For example we have discovered evidence not only for a strong correlation between near-infrared colours and the equivalent width of the forbidden line emission but also that the forbidden line emission normally arises in a blueshifted outflow component. It has already been shown in the case of the classical T Tauri stars that the correlation of near-infrared colour with forbidden line equivalent width is due to a link between the accretion rate and the outflow rate. The virtually identical relationship seen in the case of the Herbig Ae/Be stars must then also have a similar origin. Our finding that the forbidden line emission in Herbig Ae/Be stars is normally blueshifted shows not only that it arises in an outflow but, as in the classical T Tauri stars, such an asymmetry in the velocity centre of the line must be caused by the obscuring effects of a disk. We find that the correlation seen in the classical T Tauri stars between the mass-loss rate and infrared excess can be extended, when we include the Herbig Ae/Be stars, to cover almost 5 orders of magnitude in stellar luminosity. Our observations therefore broaden the findings of earlier observers for low mass young stars and indicate the presence of circumstellar disks around the majority of Herbig Ae/Be stars with forbidden line emission. A corollary of our results is that the same outflow mechanism must operate in both the classical T Tauri stars and the Herbig Ae/Be stars with forbidden line emission.


1980 ◽  
Vol 85 ◽  
pp. 33-49 ◽  
Author(s):  
William Herbst

Three types of associations are presently recognized. These are OB, R, and T, and represent, respectively, concentrations of O and B type stars, reflection nebulae, and T Tauri stars, in certain regions of the sky. OB and T associations are identified on objective prism plates; R associations may be found using direct plates such as those of the Palomar Sky Survey. All associations are intimately connected with what appear optically as dark clouds and are now detected as sources of molecular line emission and known as molecular clouds. Often, all three types of associations are found within the same cloud complex (eg, Mon OB1). However, there are also examples of T associations (Taurus) and R associations (Mon R2) which are not connected with recognized OB associations.


Author(s):  
M. Alonso-Martinez ◽  
P. Riviere-Marichalar ◽  
G. Meeus ◽  
I. Kamp ◽  
M. Fang ◽  
...  

1985 ◽  
Vol 212 (1) ◽  
pp. 151-162 ◽  
Author(s):  
M. T. V. T. Lago ◽  
M. V. Penston ◽  
R. M. Johnstone

1997 ◽  
Vol 182 ◽  
pp. 443-454
Author(s):  
John Kwan

Arguments, based on analysis of the forbidden line emission, are summarized that point to two components of mass ejection in classical T Tauri stars. A low-speed wind originates from the accretion disk at between ∼ 0.05 AU and ≳3 AU from the star, and a high-speed flow, which becomes collimated into a jet within ≲ 100 AU, originates as a wind from either the star or the very inner part of the accretion disk. The [OI] λ5577 emission in the low-speed component also requires the presence of a warm disk corona, with an electron density of ∼ 107 cm–3 and a temperature of ∼ 8000 K. Additional indication of a warm disk corona comes from analysis of the central absorptions seen in the profiles of the hydrogen Balmer lines. The need to heat the disk corona implies that a substantial fraction of the energy released in the accretion of matter through the disk may be dissipated at the disk surface.


2018 ◽  
Vol 618 ◽  
pp. A57 ◽  
Author(s):  
P. Woitke ◽  
M. Min ◽  
W.-F. Thi ◽  
C. Roberts ◽  
A. Carmona ◽  
...  

We introduce a new modelling framework including the Fast Line Tracer (FLITS) to simulate infrared line emission spectra from protoplanetary discs. This paper focusses on the mid-IR spectral region between 9.7 and 40 μm for T Tauri stars. The generated spectra contain several tens of thousands of molecular emission lines of H2O, OH, CO, CO2, HCN, C2H2, H2, and a few other molecules, as well as the forbidden atomic emission lines of S I, S II, S III, Si II, Fe II, Ne II, Ne III, Ar II, and Ar III. In contrast to previously published works, we do not treat the abundances of the molecules nor the temperature in the disc as free parameters, but use the complex results of detailed 2D PRODIMO disc models concerning gas and dust temperature structure, and molecular concentrations. FLITS computes the line emission spectra by ray tracing in an efficient, fast, and reliable way. The results are broadly consistent with R = 600 Spitzer/IRS observational data of T Tauri stars concerning line strengths, colour, and line ratios. In order to achieve that agreement, however, we need to assume either a high gas/dust mass ratio of order 1000, or the presence of illuminated disc walls at distances of a few au, for example, due to disc–planet interactions. These walls are irradiated and heated by the star which causes the molecules to emit strongly in the mid-IR. The molecules in the walls cannot be photodissociated easily by UV because of the large densities in the walls favouring their re-formation. Most observable molecular emission lines are found to be optically thick. An abundance analysis is hence not straightforward, and the results of simple slab models concerning molecular column densities can be misleading. We find that the difference between gas and dust temperatures in the disc surface is important for the line formation. The mid-IR emission features of different molecules probe the gas temperature at different depths in the disc, along the following sequence: OH (highest)–CO–H2O and CO2–HCN–C2H2 (deepest), just where these molecules start to become abundant. We briefly discuss the effects of C/O ratio and choice of chemical rate network on these results. Our analysis offers new ways to infer the chemical and temperature structure of T Tauri discs from future James Webb Space Telescope (JWST)/MIRI observations, and to possibly detect secondary illuminated disc walls based on their specific mid-IR molecular signature.


2006 ◽  
Vol 370 (2) ◽  
pp. 580-596 ◽  
Author(s):  
R. Kurosawa ◽  
T. J. Harries ◽  
N. H. Symington
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document