infrared excess
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 64)

H-INDEX

27
(FIVE YEARS 7)

2021 ◽  
Vol 923 (1) ◽  
pp. 69
Author(s):  
Florian Peißker ◽  
Michal Zajaček ◽  
Andreas Eckart ◽  
Basel Ali ◽  
Vladimír Karas ◽  
...  

Abstract Observations of the near-infrared excess object G2/DSO increased attention toward the Galactic center and its vicinity. The predicted flaring event in 2014 and the outcome of the intense monitoring of the supermassive black hole in the center of our Galaxy did not fulfill all predictions about a significantly enhanced accretion event. Subsequent observations addressed the question concerning the nature of the object because of its compact shape, especially during its periapse in 2014. Theoretical approaches have attempted to answer the contradictory behavior of the object, resisting the expected dissolution of a gaseous cloud due to tidal forces in combination with evaporation and hydrodynamical instabilities. However, assuming that the object is instead a dust-enshrouded young stellar object seems to be in line with the predictions of several groups and observations presented in numerous publications. Here we present a detailed overview and analysis of the observations of the object that have been performed with SINFONI (VLT) and we provide a comprehensive approach to clarify the nature of G2/DSO. We show that the tail emission consists of two isolated and compact sources with different orbital elements for each source rather than an extended and stretched component as it appeared in previous representations of the same data. Considering our recent publications, we propose that the monitored dust-enshrouded objects are remnants of a dissolved young stellar cluster whose formation was initiated in the circumnuclear disk. This indicates a shared history, which agrees with our analysis of the D- and X-sources.


2021 ◽  
Vol 5 (11) ◽  
pp. 269
Author(s):  
Natalia Garza Navarro ◽  
David J. Wilson

Abstract We report the recharacterization of TIC 471013547 as an eclipsing white dwarf binary using data obtained with the Transiting Exoplanet Survey Satellite (TESS). Eclipses from both components are detected, and we find a period of 3.541056 ± 0.000185 days with an ephemeris of TJD = 2458441.434 ± 0.000209 days. Its shared features with other double white dwarf eclipsing binaries and its lack of infrared excess indicate that the system likely consists of two white dwarfs.


2021 ◽  
Vol 922 (1) ◽  
pp. 27
Author(s):  
Benjamin Kidder ◽  
Gregory Mace ◽  
Ricardo López-Valdivia ◽  
Kimberly Sokal ◽  
Victoria E. Catlett ◽  
...  

Abstract We present measurements of the H- and K-band veiling for 141 young stellar objects (YSOs) in the Taurus-Auriga star-forming region using high-resolution spectra from the Immersion Grating Near-Infrared Spectrometer. In addition to providing measurements of r H and r K , we produce low-resolution spectra of the excess emission across the H and K bands. We fit temperatures to the excess spectra of 46 members of our sample and measure near-infrared excess temperatures ranging from 1200–2200 K, with an average of 1575 ± 225 K. We compare the luminosity of the excess continuum emission in Class II and Class III YSOs and find that a number of Class III sources display a significant amount of excess flux in the near-infrared. We conclude that the mid-infrared SED slope, and therefore young stellar object classification, is a poor predictor of the amount of near-infrared veiling. If the veiling arises in thermal emission from dust, its presence implies a significant amount of remaining inner-disk (<1 au) material in these Class III sources. We also discuss the possibility that the veiling effects could result from massive photospheric spots, unresolved binary companions, or accretion emission. Six low-mass members of our sample contain a prominent feature in their H-band excess spectra that is consistent with veiling from cool photospheric spots.


2021 ◽  
Vol 921 (1) ◽  
pp. L4
Author(s):  
Jacob Lustig-Yaeger ◽  
Kevin B. Stevenson ◽  
L. C. Mayorga ◽  
Kristin Showalter Sotzen ◽  
Erin M. May ◽  
...  

2021 ◽  
Vol 18 (2) ◽  
pp. 13-27
Author(s):  
Yung Kipreos ◽  
Inseok Song

A circumstellar disk that surrounds a star is composed of gas, dust, and rocky objects that are in orbit around it. Around infant stars, this disk can act as a source of material that can be used to form planetesimals, which can then accrete more material and form into planets. Studying the mineral composition of these disks can provide insight into the processes that created our solar system. The purpose of this paper is to analyze the mineral composition of these disks by using a newly created python package, Min-CaLM. This package determines the relative mineral abundance within a disk by using a linear regression technique called non-negative least square minimization. The circumstellar disks that are capable of undergoing compositional analysis must have a spectrum with both a detectable mid-infrared excess and prominent silicate features. From our sample, there are only eight debris disks that qualify to be candidates for the Min-CaLM program. The mineral compositions calculated by Min-CaLM are then compared to the Tholen asteroid classification scheme. HD 23514, HD 105234, HD 15407A, BD+20 307, HD 69830, and HD 172555 are found to have a compositions similar to that expected for C-type asteroids, TYC 9410-532-1 resembles the composition of S-type asteroids, and HD 100546 resembles D-type asteroids. Min-CaLM also calculates the mineral compositions of the comets Tempel 1 and Hale-Bopp, and they are used as a comparison between the material in our early solar system and the debris disk compositions. KEYWORDS: Debris disk; Mineral; Composition; Analysis; Asteroid; Circumstellar; Spectroscopy; Python


2021 ◽  
Author(s):  
Ting-Wan Chen ◽  
Seán Brennan ◽  
Roger Wesson ◽  
Morgan Fraser ◽  
Tassilo Schweyer ◽  
...  

Abstract We investigate the thermal emission and extinction from dust associated with the nearby superluminous supernova (SLSN) 2018bsz. Our dataset has daily cadence and simultaneous optical and near-infrared coverage up to ~ 100 days, together with late time (+1.7 yr) MIR observations. At 230 days after light curve peak the SN is not detected in the optical, but shows a surprisingly strong near-infrared excess, with r - J > 3 mag and r - Ks > 5 mag. The time evolution of the infrared light curve enables us to investigate if the mid-infrared emission is from newly formed dust inside the SN ejecta, from a pre-existing circumstellar envelope, or interstellar material heated by the radiation from the SN. We find the latter two scenarios can be ruled out, and a scenario where new dust is forming in the SN ejecta at epochs > 200 days can self-consistently reproduce the evolution of the SN flux. We can fit the spectral energy distribution well at +230d with 5x10-4 solar mass of carbon dust, increasing over the following several hundred days to 10-2 solar mass by +535d. SN 2018bsz is the first SLSN showing evidence for dust formation within the SN ejecta, and appears to form ten times more dust than normal core-collapse SNe at similar epochs. Together with their preference for low mass, low metallicity host galaxies, we suggest that SLSNe may be a significant contributor to dust formation in the early Universe.


Author(s):  
B. Gyürüs ◽  
Cs. Kiss ◽  
J.C. Morales ◽  
N. Nakhjiri ◽  
G. Marton ◽  
...  

AbstractTo investigate the feasibility of ancillary target observations with ESA’s Ariel mission, we compiled a list of potentially interesting young stars: FUors, systems harbouring extreme debris discs and a larger sample of young stellar objects showing strong near/mid-infrared excess. These objects can be observed as additional targets in the waiting times between the scheduled exoplanet transit and occultation observations. After analyzing the schedule for Ariel an algorithm was constructed to find the optimal target to be observed in each gap. The selection was mainly based on the slew and stabilization time needed to observe the selected YSO, but it also incorporated the scientific importance of the targets and whether they have already been sufficiently measured. After acquiring an adequately large sample of simulation data, it was concluded that approximately 99.2% of the available – at least one hour long – gaps could be used effectively. With an average slewing and stabilization time of about 16.7 minutes between scheduled exoplanet transits and ancillary targets, this corresponds to an additional 2881 ± 56 hours of active data gathering. When this additional time is used to observe our selected 200 ancillary targets, a typical signal-to-noise ratio of $\sim 10^{4}$ ∼ 1 0 4 can be achieved along the whole spectral window covered by Ariel.


Author(s):  
N P Gentile Fusillo ◽  
C J Manser ◽  
Boris T Gänsicke ◽  
O Toloza ◽  
D Koester ◽  
...  

Abstract White dwarfs with emission lines from gaseous debris discs are among the rarest examples of planetary remnant hosts, but at the same time they are key objects for studying the final evolutionary stage of planetary systems. Making use of the large number of white dwarfs identified in Gaia DR2, we are conducting a survey of planetary remnants and here we present the first results of our search: six white dwarfs with gaseous debris discs. This first publication focuses on the main observational properties of these objects and highlights their most unique features. Three systems in particular stand out: WD J084602.47+570328.64 displays an exceptionally strong infrared excess which defies the standard model of a geometrically-thin, optically-thick dusty debris disc; WD J213350.72+242805.93 is the hottest gaseous debris disc host known with ${T_{\rm{eff}}}=29\, 282$ K; and WD J052914.32–340108.11, in which we identify a record number of 51 emission lines from five elements. These discoveries shed light on the underlying diversity in gaseous debris disc systems and bring the total number of these objects to 21. With these numbers we can now start looking at the properties of these systems as a class of objects rather than on a case-by-case basis.


2021 ◽  
Vol 503 (2) ◽  
pp. 1780-1797
Author(s):  
M E Jarvis ◽  
C M Harrison ◽  
V Mainieri ◽  
D M Alexander ◽  
F Arrigoni Battaia ◽  
...  

ABSTRACT We present the first results from the Quasar Feedback Survey, a sample of 42 z &lt; 0.2, [O iii] luminous AGNs ( L[O III] &gt; 1042.1 ergs s−1) with moderate radio luminosities (i.e. L1.4GHz &gt; 1023.4 W Hz−1; median L1.4GHz = 5.9 × 1023 W Hz−1). Using high spatial resolution (∼0.3–1 arcsec), 1.5–6 GHz radio images from the Very Large Array, we find that 67 per cent of the sample have spatially extended radio features on ∼1–60 kpc scales. The radio sizes and morphologies suggest that these may be lower radio luminosity versions of compact, radio-loud AGNs. By combining the radio-to-infrared excess parameter, spectral index, radio morphology, and brightness temperature, we find radio emission in at least 57 per cent of the sample that is associated with AGN-related processes (e.g. jets, quasar-driven winds, or coronal emission). This is despite only 9.5–21 per cent being classified as radio-loud using traditional criteria. The origin of the radio emission in the remainder of the sample is unclear. We find that both the established anticorrelation between radio size and the width of the [O   iii] line, and the known trend for the most [O iii] luminous AGNs to be associated with spatially extended radio emission, also hold for our sample of moderate radio luminosity quasars. These observations add to the growing evidence of a connection between the radio emission and ionized gas in quasar host galaxies. This work lays the foundation for deeper investigations into the drivers and impact of feedback in this unique sample.


2021 ◽  
Vol 502 (3) ◽  
pp. 3210-3241
Author(s):  
Lichen Liang ◽  
Robert Feldmann ◽  
Christopher C Hayward ◽  
Desika Narayanan ◽  
Onur Çatmabacak ◽  
...  

ABSTRACT The relation between infrared excess (IRX) and UV spectral slope (βUV) is an empirical probe of dust properties of galaxies. The shape, scatter, and redshift evolution of this relation are not well understood, however, leading to uncertainties in estimating the dust content and star formation rates (SFRs) of galaxies at high redshift. In this study, we explore the nature and properties of the IRX–βUV relation with a sample of z = 2–6 galaxies ($M_*\approx 10^9\!-\!10^{12}\, \mathrm{M}_\odot$) extracted from high-resolution cosmological simulations (MassiveFIRE) of the Feedback in Realistic Environments (FIRE) project. The galaxies in our sample show an IRX–βUV relation that is in good agreement with the observed relation in nearby galaxies. IRX is tightly coupled to the UV optical depth, and is mainly determined by the dust-to-star geometry instead of total dust mass, while βUV is set both by stellar properties, UV optical depth, and the dust extinction law. Overall, much of the scatter in the IRX–βUV relation of our sample is found to be driven by variations of the intrinsic UV spectral slope. We further assess how the IRX–βUV relation depends on viewing direction, dust-to-metal ratio, birth-cloud structures, and the dust extinction law and we present a simple model that encapsulates most of the found dependencies. Consequently, we argue that the reported ‘deficit’ of the infrared/sub-millimetre bright objects at z ≳ 5 does not necessarily imply a non-standard dust extinction law at those epochs.


Sign in / Sign up

Export Citation Format

Share Document