scholarly journals The masses of two binary neutron star systems

1993 ◽  
Vol 405 ◽  
pp. L29 ◽  
Author(s):  
S. E. Thorsett ◽  
Z. Arzoumanian ◽  
M. M. McKinnon ◽  
J. H. Taylor
2020 ◽  
Vol 639 ◽  
pp. A41 ◽  
Author(s):  
S. Banerjee ◽  
K. Belczynski ◽  
C. L. Fryer ◽  
P. Berczik ◽  
J. R. Hurley ◽  
...  

Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N-body evolution program NBODY7. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. Methods. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE. All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7/BSE. Results. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts.


1996 ◽  
Vol 165 ◽  
pp. 279-285
Author(s):  
W.T.S. Deich ◽  
S.R. Kulkarni

Several years of timing the pulsar in the binary neutron star system M15C have yielded the masses of both stars: the total mass is MT = 2.7121(6) M⊙; the companion mass is mc = 1.36(4) M⊙; and the pulsar mass is mp = 1.35(4) M⊙. We argue that this system is not likely to have formed through accretion-induced collapse (AIC), and that the standard model also has problems in explaining the formation.


2020 ◽  
Vol 499 (1) ◽  
pp. L96-L100
Author(s):  
B Patricelli ◽  
M G Bernardini

ABSTRACT The joint observation of GW170817 and GRB170817A proved that binary neutron star (BNS) mergers are progenitors of short gamma-ray bursts (SGRBs): this established a direct link between the still unsettled SGRB central engine and the outcome of BNS mergers, whose nature depends on the equation of state (EOS) and on the masses of the NSs. We propose a novel method to probe the central engine of SGRBs based on this link. We produce an extended catalogue of BNS mergers by combining recent theoretically predicted BNS merger rate as a function of redshift and the NS mass distribution inferred from measurements of Galactic BNSs. We use this catalogue to predict the number of BNS systems ending as magnetars (stable or supramassive NS) or BHs (formed promptly or after the collapse of a hypermassive NS) for different EOSs, and we compare these outcomes with the observed rate of SGRBs. Despite the uncertainties mainly related to the poor knowledge of the SGRB jet structure, we find that for most EOSs the rate of magnetars produced after BNS mergers is sufficient to power all the SGRBs, while scenarios with only BHs as possible central engine seem to be disfavoured.


2020 ◽  
Vol 496 (1) ◽  
pp. L64-L69 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Nicholas Farrow ◽  
Simon Stevenson ◽  
Eric Thrane ◽  
Xing-Jiang Zhu

ABSTRACT The LIGO/Virgo collaborations recently announced the detection of a binary neutron star merger, GW190425. The mass of GW190425 is significantly larger than the masses of Galactic double neutron stars known through radio astronomy. We hypothesize that GW190425 formed differently from Galactic double neutron stars, via unstable ‘case BB’ mass transfer. According to this hypothesis, the progenitor of GW190425 was a binary consisting of a neutron star and a ∼4–$5\, {\mathrm{ M}_\odot }$ helium star, which underwent common-envelope evolution. Following the supernova of the helium star, an eccentric double neutron star was formed, which merged in ${\lesssim }10\, {\rm Myr}$. The helium star progenitor may explain the unusually large mass of GW190425, while the short time to merger may explain why similar systems are not observed in radio. To test this hypothesis, we measure the eccentricity of GW190425 using publicly available LIGO/Virgo data. We constrain the eccentricity at $10\, {\rm Hz}$ to be e ≤ 0.007 with $90{{\ \rm per\ cent}}$ confidence. This provides no evidence for or against the unstable mass transfer scenario, because the binary is likely to have circularized to e ≲ 10−4 by the time it was detected. Future detectors will help to reveal the formation channel of mergers similar to GW190425 using eccentricity measurements.


2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Rossella Gamba ◽  
Matteo Breschi ◽  
Sebastiano Bernuzzi ◽  
Michalis Agathos ◽  
Alessandro Nagar

2021 ◽  
Vol 502 (2) ◽  
pp. 1843-1855
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT We perform 3D general-relativistic magnetohydrodynamic simulations to model the jet break-out from the ejecta expected to be produced in a binary neutron-star merger. The structure of the relativistic outflow from the 3D simulation confirms our previous results from 2D simulations, namely, that a relativistic magnetized outflow breaking out from the merger ejecta exhibits a hollow core of θcore ≈ 4°, an opening angle of θjet ≳ 10°, and is accompanied by a wind of ejected matter that will contribute to the kilonova emission. We also compute the non-thermal afterglow emission of the relativistic outflow and fit it to the panchromatic afterglow from GRB170817A, together with the superluminal motion reported from VLBI observations. In this way, we deduce an observer angle of $\theta _{\rm obs}= 35.7^{\circ \, \, +1.8}_{\phantom{\circ \, \, }-2.2}$. We further compute the afterglow emission from the ejected matter and constrain the parameter space for a scenario in which the matter responsible for the thermal kilonova emission will also lead to a non-thermal emission yet to be observed.


2020 ◽  
Vol 804 ◽  
pp. 135402 ◽  
Author(s):  
Revaz Beradze ◽  
Merab Gogberashvili ◽  
Alexander S. Sakharov

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Kenta Hotokezaka ◽  
Kenta Kiuchi ◽  
Koutarou Kyutoku ◽  
Takayuki Muranushi ◽  
Yu-ichiro Sekiguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document