No Water Masers Associated with Supernova Remnants

1999 ◽  
Vol 117 (3) ◽  
pp. 1387-1391 ◽  
Author(s):  
M. J. Claussen ◽  
W. M. Goss ◽  
D. A. Frail ◽  
M. Seta
1998 ◽  
Vol 115 (3) ◽  
pp. 1057-1075 ◽  
Author(s):  
John R. Dickel ◽  
D. K. Milne

1998 ◽  
Vol 493 (2) ◽  
pp. 940-949 ◽  
Author(s):  
R. A. Gaume ◽  
T. L. Wilson ◽  
F. J. Vrba ◽  
K. J. Johnston ◽  
J. Schmid‐Burgk
Keyword(s):  

2020 ◽  
Vol 494 (2) ◽  
pp. 1531-1538
Author(s):  
A Moranchel-Basurto ◽  
P F Velázquez ◽  
G Ares de Parga ◽  
E M Reynoso ◽  
E M Schneiter ◽  
...  

ABSTRACT We have performed 3D magnetohydrodynamics (MHD) numerical simulations with the aim of exploring the scenario in which the initial mass distribution of a supernova (SN) explosion is anisotropic. The purpose is to analyse if this scenario can also explain the radio-continuum emission and the expansion observed in young supernova remnants (SNRs). To study the expansion, synthetic polarized synchrotron emission maps were computed from the MHD simulations. We found a good agreement (under a number of assumptions) between this expansion study and previous observational results applied to Tycho’s SNR, which represents a good example of asymmetric young SNRs. Additionally, both the observed morphology and the brightness distribution are qualitatively reproduced.


2020 ◽  
Vol 500 (2) ◽  
pp. 2336-2358
Author(s):  
Miranda Yew ◽  
Miroslav D Filipović ◽  
Milorad Stupar ◽  
Sean D Points ◽  
Manami Sasaki ◽  
...  

ABSTRACT We present a new optical sample of three Supernova Remnants (SNRs) and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud (LMC). These objects were originally selected using deep H α, [S ii], and [O iii] narrow-band imaging. Most of the newly found objects are located in less dense regions, near or around the edges of the LMC’s main body. Together with previously suggested MCSNR J0541–6659, we confirm the SNR nature for two additional new objects: MCSNR J0522–6740 and MCSNR J0542–7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [S ii]/H α emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509–6402 to be a special example of the remnant of a possible type Ia Supernova (SN) which is situated some 2° (∼1.75 kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of ∼2. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very rarefied environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.


New Astronomy ◽  
2021 ◽  
Vol 83 ◽  
pp. 101492
Author(s):  
E.N. Ercan ◽  
E. AKTEKİN
Keyword(s):  

2014 ◽  
Vol 445 (4) ◽  
pp. 4504-4514 ◽  
Author(s):  
A. Ingallinera ◽  
C. Trigilio ◽  
G. Umana ◽  
P. Leto ◽  
C. Agliozzo ◽  
...  

2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


Sign in / Sign up

Export Citation Format

Share Document