A Method of Mass Measurement in Black Hole Binaries using Timing and High-Resolution X-Ray Spectroscopy

1999 ◽  
Vol 521 (1) ◽  
pp. L45-L48 ◽  
Author(s):  
A. Vikhlinin
2000 ◽  
Vol 85 (1-3) ◽  
pp. 280-283
Author(s):  
A Monfardini ◽  
A Alessandrello ◽  
J.W Beeman ◽  
C Brofferio ◽  
O Cremonesi ◽  
...  

2020 ◽  
Vol 492 (4) ◽  
pp. 5271-5279 ◽  
Author(s):  
Nick Higginbottom ◽  
Christian Knigge ◽  
Stuart A Sim ◽  
Knox S Long ◽  
James H Matthews ◽  
...  

ABSTRACT X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous (${L = 0.5 \, L_{\mathrm{\mathrm{ Edd}}}}$) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with ${\dot{M}_{\mathrm{ wind}} \simeq 2 \, \dot{M}_{\mathrm{ acc}}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe xxv and Fe xxvi features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state – the peculiar GRS 1915+105 – we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.


2020 ◽  
Vol 633 ◽  
pp. A35 ◽  
Author(s):  
D. Gronkiewicz ◽  
A. Różańska

Context. We self-consistently model a magnetically supported accretion disk around a stellar-mass black hole with a warm optically thick corona based on first principles. We consider the gas heating by magneto-rotational instability dynamo. Aims. Our goal is to show that the proper calculation of the gas heating by magnetic dynamo can build up the warm optically thick corona above the accretion disk around a black hole of stellar mass. Methods. Using the vertical model of the disk supported and heated by the magnetic field together with radiative transfer in hydrostatic and radiative equilibrium, we developed a relaxation numerical scheme that allowed us to compute the transition form the disk to corona in a self-consistent way. Results. We demonstrate here that the warm (up to 5 keV) optically thick (up to 10 τes) Compton-cooled corona can form as a result of magnetic heating. A warm corona like this is stronger in the case of the higher accretion rate and the greater magnetic field strength. The radial extent of the warm corona is limited by local thermal instability, which purely depends on radiative processes. The obtained coronal parameters are in agreement with those constrained from X-ray observations. Conclusions. A warm magnetically supported corona tends to appear in the inner disk regions. It may be responsible for soft X-ray excess seen in accreting sources. For lower accretion rates and weaker magnetic field parameters, thermal instability prevents a warm corona, giving rise to eventual clumpiness or ionized outflow.


1996 ◽  
Vol 165 ◽  
pp. 363-367
Author(s):  
W.S. Paciesas ◽  
S.N. Zhang ◽  
B.C. Rubin ◽  
B.A. Harmon ◽  
C.A. Wilson ◽  
...  

A bright transient X-ray source, GRO J1655-40 (X-ray Nova Scorpii 1994) was discovered with BATSE (the Burst and Transient Source Experiment) in late July 1994. More recently, the source also became a strong radio emitter, its rise in the radio being approximately anti-correlated with a decline in the hard X-ray intensity. High-resolution radio observations subsequent to this symposium showed evidence for superluminally expanding jets. Since the hard X-ray emission extends to at least 200 keV and we find no evidence of pulsations, we tentatively classify the source as a black-hole candidate. However, its hard X-ray spectrum is unusually steep (power-law photon index α ≃ −3) relative to most other black-hole candidates. In this regard, it resembles GRS 1915+105, the first galactic source to show superluminal radio jets.


2016 ◽  
Vol 337 (4-5) ◽  
pp. 507-511
Author(s):  
M. Mizumoto ◽  
K. Ebisawa ◽  
M. Tsujimoto ◽  
H. Inoue

1994 ◽  
Author(s):  
Chuan Luo ◽  
Cesar Meirelles ◽  
Edison Liang
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document