scholarly journals Effect of Ontogenetic Increases in Body Size on Burst Swimming Performance in Tadpoles of the Striped Marsh Frog, Limnodynastes peronii

2000 ◽  
Vol 73 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Robbie S. Wilson ◽  
Craig E. Franklin
2017 ◽  
Vol 74 (12) ◽  
pp. 2035-2044 ◽  
Author(s):  
David R. Dockery ◽  
Thomas E. McMahon ◽  
Kevin M. Kappenman ◽  
Matthew Blank

A lack of information on the swimming abilities of sauger (Sander canadensis), a highly migratory species particularly sensitive to habitat fragmentation, may inhibit the design of effective passage structures for this species. Passage success, maximum ascent distances, and maximum sprint velocities of sauger were estimated in an open-channel flume over a range of water velocities (51, 78, and 92 cm·s−1) and temperatures (10.0, 14.3, and 18.3 °C) to assess swimming performance. Passage success was high (91%) over all test velocities, as was the maximum instantaneous burst velocity (219 cm·s−1). Water temperature and body size had little effect on swimming performance. Sauger transitioned from steady, sustained swimming to unsteady, burst–glide, or steady burst swimming at 97 cm·s−1. Sauger were capable of sustained sprints of 124 cm·s−1 over 15 s duration in a swim chamber. Results suggest passage structures with water velocities less than 97 cm·s−1 should provide high probability of successful passage of adult sauger, whereas structures with water velocities exceeding 219 cm·s−1 may be impassable.


Aquaculture ◽  
2014 ◽  
Vol 420-421 ◽  
pp. 154-159 ◽  
Author(s):  
Kristy L. Bellinger ◽  
Gary H. Thorgaard ◽  
Patrick A. Carter

1998 ◽  
Vol 76 (4) ◽  
pp. 680-688 ◽  
Author(s):  
Christophe Garenc ◽  
Frederick G Silversides ◽  
Helga Guderley

Full-sib heritabilities of burst-swimming capacity and its enzymatic correlates were calculated in juvenile threespine sticklebacks, Gasterosteus aculeatus, from 25 families raised under constant laboratory conditions. Variation among families in burst-swimming performance, enzyme activities, body size, and condition of the juveniles was considerable. Estimates of full-sib heritabilities of absolute and relative burst-swimming performance decreased during ontogenesis, as they were higher for 2-month-old than for 3.6-month-old sticklebacks. This decline may reflect a decrease in the importance of paternal effects with age, as well as an increase in intrafamilial variability due to the existence of feeding or social hierarachies. Enzymatic correlates of burst-swimming performance measured in 3.6-month-old sticklebacks had higher full-sib heritabilities than burst-swimming performance itself, with the highest values found for cytochrome c oxidase, followed by lactate dehydrogenase and then phosphofructokinase and creatine phosphokinase. These results suggest that genetic factors may have a considerable influence upon burst-swimming performance and muscle metabolic capacities of juvenile threespine sticklebacks, but that this influence may be tempered by biotic interactions.


2003 ◽  
Vol 28 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Craig E. Franklin ◽  
Robbie S. Wilson ◽  
William Davison

1989 ◽  
Vol 143 (1) ◽  
pp. 195-210 ◽  
Author(s):  
STEPHEN D. ARCHER ◽  
IAN A. JOHNSTON

1. The kinematics of labriform and subcarangiform swimming have been investigated for juvenile (7–8 cm) and adult (27–30 cm) stages of the antarctic teleost Notothenia neglecta Nybelin at 1–2 °C 2. Upper threshold speeds using the pectoral fins alone (labriform swimming) were 0.8LS−1 in adult fish and 1.4Ls−1 in juveniles, where L is body length 3. In adult fish, steady subcarangiform swimming is only used at speeds of 3.6-5.4Ls−1 (tail-beat frequencies of 5.0-8.3Hz). Intermediate speeds involve unsteady swimming. In contrast, juvenile fish employ subcarangiform swimming at a range of intermediate velocities between the maximum labriform and burst speeds (2.3-8.4Ls−1 at tail-beat frequencies of 4.0-12.5 Hz). These differences in swimming behaviour are discussed in relation to changes in life-style and muscle fibre type composition between juvenile and adult fish 4. Burst swimming speeds in N. neglecta have been compared with equivalent data from temperate species. It seems likely that low temperature limits swimming performance in antarctic fish. This is more noticeable in juvenile stages, which normally have much higher tail-beat frequencies than adult fish


Sign in / Sign up

Export Citation Format

Share Document